We present an algorithm for the per-voxel semantic segmentation of a three-dimensional volume. At the core of our algorithm is a novel "pyramid context" feature, a descriptive representation designed such that exact per-voxel linear classification can be made extremely efficient. This feature not only allows for efficient semantic segmentation but enables other aspects of our algorithm, such as novel learned features and a stacked architecture that can reason about self-consistency. We demonstrate our technique on 3D fluorescence microscopy data of Drosophila embryos for which we are able to produce extremely accurate semantic segmentations in a matter of minutes, and for which other algorithms fail due to the size and high-dimensionality of the data, or due to the difficulty of the task.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4445881PMC
http://dx.doi.org/10.1109/ICCV.2013.428DOI Listing

Publication Analysis

Top Keywords

semantic segmentation
12
algorithm novel
8
volumetric semantic
4
segmentation pyramid
4
pyramid context
4
context features
4
features algorithm
4
algorithm per-voxel
4
per-voxel semantic
4
segmentation three-dimensional
4

Similar Publications

Retinal blood vessels are the only blood vessels in the human body that can be observed non-invasively. Changes in vessel morphology are closely associated with hypertension, diabetes, cardiovascular disease and other systemic diseases, and computers can help doctors identify these changes by automatically segmenting blood vessels in fundus images. If we train a highly accurate segmentation model on one dataset (source domain) and apply it to another dataset (target domain) with a different data distribution, the segmentation accuracy will drop sharply, which is called the domain shift problem.

View Article and Find Full Text PDF

Weakly-supervised thyroid ultrasound segmentation: Leveraging multi-scale consistency, contextual features, and bounding box supervision for accurate target delineation.

Comput Biol Med

January 2025

Department of Artificial Intelligence, Faculty of Artificial Intelligence, Egyptian Russian University, 11829, Badr City, Egypt. Electronic address:

Weakly-supervised learning (WSL) methods have gained significant attention in medical image segmentation, but they often face challenges in accurately delineating boundaries due to overfitting to weak annotations such as bounding boxes. This issue is particularly pronounced in thyroid ultrasound images, where low contrast and noisy backgrounds hinder precise segmentation. In this paper, we propose a novel weakly-supervised segmentation framework that addresses these challenges.

View Article and Find Full Text PDF

Physics-Based Synthetic Data Model for Automated Segmentation in Catalysis Microscopy.

Microsc Microanal

January 2025

Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin 14195, Germany.

In catalysis research, the amount of microscopy data acquired when imaging dynamic processes is often too much for nonautomated quantitative analysis. Developing machine learned segmentation models is challenged by the requirement of high-quality annotated training data. We thus substitute expert-annotated data with a physics-based sequential synthetic data model.

View Article and Find Full Text PDF

Glaucoma, a severe eye disease leading to irreversible vision loss if untreated, remains a significant challenge in healthcare due to the complexity of its detection. Traditional methods rely on clinical examinations of fundus images, assessing features like optic cup and disc sizes, rim thickness, and other ocular deformities. Recent advancements in artificial intelligence have introduced new opportunities for enhancing glaucoma detection.

View Article and Find Full Text PDF

Background: EUS-guided fine-needle biopsy is the procedure of choice for the diagnosis of pancreatic ductal adenocarcinoma (PDAC). Nevertheless, the samples obtained are small and require expertise in pathology, whereas the diagnosis is difficult in view of the scarcity of malignant cells and the important desmoplastic reaction of these tumors. With the help of artificial intelligence, the deep learning architectures produce a fast, accurate, and automated approach for PDAC image segmentation based on whole-slide imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!