Tissue damage leads to a robust and rapid inflammatory response whereby leukocytes are actively drawn toward the wound. Hydrogen peroxide (H2O2) has been shown to be an immediate damage signal essential for the recruitment of these inflammatory blood cells to wound sites in both Drosophila and vertebrates [1, 2]. Recent studies in zebrafish have shown that wound-induced H2O2 is detected by the redox-sensitive Src family kinase (SFK) Lyn within the responding blood cells [3]. Here, we show the same signaling occurs in Drosophila inflammatory cells in response to wound-induced H2O2 with mutants for the Lyn homolog Src42A displaying impaired inflammatory migration to wounds. We go on to show that activation of Src42A is necessary to trigger a signaling cascade within the inflammatory cells involving the ITAM domain-containing protein Draper-I (a member of the CED-1 family of apoptotic cell clearance receptors) and a downstream kinase, Shark, that is required for migration to wounds. The Src42A-Draper-Shark-mediated signaling axis is homologous to the well-established SFK-ITAM-Syk-signaling pathway used in vertebrate adaptive immune responses. Consequently, our results suggest that adaptive immunoreceptor-signaling pathways important in distinguishing self from non-self appear to have evolved from a more-ancient damage response. Furthermore, this changes the role of H2O2 from an inflammatory chemoattractant to an activator signal that primes immune cells to respond to damage cues via the activation of damage receptors such as Draper.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4503800 | PMC |
http://dx.doi.org/10.1016/j.cub.2015.04.037 | DOI Listing |
JCO Precis Oncol
January 2025
Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, MI.
Purpose: Although lung cancer is one of the most common malignancies, the underlying genetics regarding susceptibility remain poorly understood. We characterized the spectrum of pathogenic/likely pathogenic (P/LP) germline variants within DNA damage response (DDR) genes among lung cancer cases and controls in non-Hispanic Whites (NHWs) and African Americans (AAs).
Materials And Methods: Rare, germline variants in 67 DDR genes with evidence of pathogenicity were identified using the ClinVar database.
ACS Appl Mater Interfaces
January 2025
Department of Gerontology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China.
20% acute pancreatitis (AP) develops into severe AP (SAP), a global health crisis, with an increased mortality rate to 30%-50%. Mitochondrial damage and immune disorders are direct factors, which exacerbate the occurrence and progression of AP. So far, mitochondrial and immunity injury in SAP remains largely elusive, with no established treatment options available.
View Article and Find Full Text PDFSci Adv
January 2025
School of Materials Science & Chemical Engineering, Ministry of Education Key Laboratory of Impact and Safety Engineering, Ningbo University, Ningbo 315211, China.
Self-healing hydrogels can autonomously repair damage, enhancing their performance stability and broadening their applications as soft devices. Although the incorporation of dynamic interactions enhances self-healing capabilities, it simultaneously weakens the hydrogels' strength. External stimuli such as heating, while accelerating the healing process, may also lead to dehydration.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Otorhinolaryngology, Fujian Provincial Hospital, Fuzhou, Fujian, China.
Objective: Using rabbit models, this study simulated the laryngopharynx's response to the synergistic effects of various acidic reflux environments and pepsin to investigate the response mechanism underlying weak acid reflux and pepsin in the mucosal barrier injury of laryngopharyngeal reflux.
Methods: The rabbits were divided into six groups, and the original larynx was recorded for each group. During the study period, rabbits were sprayed with different doses of acid and pepsin solutions and monitored for hypopharyngeal mucosal transient impedance before and after modeling.
Proc Natl Acad Sci U S A
January 2025
Department of Neurobiology, Harvard Medical School, Boston, MA 02115.
The sense of hearing originates in the cochlea, which detects sounds across dynamic sensory environments. Like other peripheral organs, the cochlea is subjected to environmental insults, including loud, damage-inducing sounds. In response to internal and external stimuli, the central nervous system directly modulates cochlear function through olivocochlear neurons (OCNs), which are located in the brainstem and innervate the cochlear sensory epithelium.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!