Salt sensitive hypertension is characterized by increases in blood pressure in response to increases in dietary salt intake and is associated with an enhanced risk of cardiovascular and renal morbidity. Although researchers have sought for decades to understand how salt sensitivity develops in humans, the mechanisms responsible for the increases in blood pressure in response to high salt intake are complex and only partially understood. Until now, scientists have been unable to explain why some individuals are salt sensitive and others are salt resistant. Although a central role for the kidneys in the development of salt sensitivity and hypertension has been generally accepted, it is also recognized that hypertension is of multifactorial origin and a variety of factors can induce, or prevent, blood pressure responsiveness to the manipulation of salt intake. Excess salt intake in susceptible persons may also induce inappropriate central and sympathetic nervous system responses and increase the production of intrarenal angiotensin II, catecholamines and other factors such as oxidative stress and inflammatory cytokines. One key factor is the concomitant inappropriate or paradoxical activation of the intrarenal renin-angiotensin system, by high salt intake. This is reflected by the increases in urinary angiotensinogen during high salt intake in salt sensitive models. A complex interaction between neuroendocrine factors and the kidney may underlie the propensity for some individuals to retain salt and develop salt-dependent hypertension. In this review, we focus mainly on the renal contributions that provide the mechanistic links between chronic salt intake and the development of hypertension.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4626881 | PMC |
http://dx.doi.org/10.2174/1573402111666150530203858 | DOI Listing |
Animal
December 2024
Department of Ruminant Science, Institute of Animal Science, Agricultural Research Organization, Rishon Lezion 7528809, Israel. Electronic address:
Use of desalinated seawater in arid and semiarid regions for domestic, industrial, and agricultural purposes is on the rise. Consequently, in those regions, drinking water offered to lactating cows has lower salinity and mineral concentrations than in the past. Although water with total dissolved solids (TDSs) of up to 1 000 ppm is considered safe for drinking, lower salinity level may affect rumen physiology, feed and water intake, or milk yield.
View Article and Find Full Text PDFJ Nutr Educ Behav
January 2025
Department of Epidemiology and Biostatistics, School of Population Health, The University of Auckland, Auckland, New Zealand; Centre for Translational Health Research: Informing Policy and Practice, School of Population Health, The University of Auckland, Auckland, New Zealand.
Objective: To explore dietary salt-related knowledge, attitudes, and behaviors of New Zealand (NZ) adults aged 18-65 years and assess differences by demographic subgroups.
Design: Cross-sectional online survey conducted between June 1, 2018 and August 31, 2018.
Setting: Participants were recruited in shopping malls, via social media, and a market research panel.
Nutrients
December 2024
Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia.
: Following previous findings on high-salt (HS)-intake-related increase of oxidative stress, this study explored whether carnosine (CAR; β-alanyl-L-histidine), a reactive oxygen species (ROS) scavenger, enhanced antioxidative defence and vascular function following HS, potentially via the NRF2 or HIF-1α signalling pathway. : Sprague Dawley rats (64, 8-10 weeks old, both sexes) were divided into four groups (n = 6/group): CTRL (0.4% NaCl), HS (4% NaCl for 7 days), CTRL + CAR (0.
View Article and Find Full Text PDFFoods
January 2025
Department of Cardiology, School of Medicine, Marmara University, Istanbul 34854, Turkey.
Foods
December 2024
SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Liaoning Key Laboratory of Food Nutrition and Health, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
Currently, high-salt diets have become one of the world's biggest dietary crisis and long-term high-salt diets are seriously detrimental to human health. In response to this situation, the present study proposed a saltiness enhancement strategy using alginate, which is a dietary fibre from brown algae and has many health benefits, such as regulating intestinal microbiota, anti-hypertension and anti-obesity. The comparison of alginates with different viscosities showed that alginate of 1000-1500 cps at a concentration of 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!