Environmental radionuclides in a coastal wetland of the Southern Laizhou Bay, China.

Mar Pollut Bull

Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology (IO), Chinese Academy of Sciences (CAS), Qingdao 266071, PR China; Graduate University of Chinese Academy of Sciences, Beijing 100049, PR China.

Published: August 2015

The radioactivity concentration of (238)U, (232)Th, (226)Ra, (40)K, and (137)Cs in soil samples collected in a coastal wetland of the Southern Laizhou Bay, China were measured. Mean activity concentrations were 54.4±11.7, 57.9±9.7, 28.6±4.3, 542±21, and 10.2±2.9Bqkg(-1) dry weight for (238)U, (232)Th, (226)Ra, (40)K and (137)Cs, respectively. Statistical analyses suggested significant correlations between clay content and (40)K as well as (137)Cs. The radium equivalent activity, the absorbed dose rate in the air at 1m above the ground surface, and the external hazard index were calculated. The result showed that the radioactivity level in the wetland was in normal range. But sites along the river tended to have higher radiological hazard indexes. The vertical distributions of radionuclides in profiles illustrated some phenomena, such as vertical transport of (238)U, disequilibrium between (238)U and (226)Ra, and change in material sources.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2015.05.035DOI Listing

Publication Analysis

Top Keywords

coastal wetland
8
wetland southern
8
southern laizhou
8
laizhou bay
8
bay china
8
238u 232th
8
232th 226ra
8
226ra 40k
8
40k 137cs
8
environmental radionuclides
4

Similar Publications

Influence of precipitation and temperature variability on anthropogenic nutrient inputs in a river watershed: Implications for environmental management.

J Environ Manage

January 2025

Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China; State Key Laboratory of Wetland Conservation and Restoration, School of Environment, Beijing Normal University, Beijing, 100875, China; Key Laboratory of Coastal Water Environmental Management and Water Ecological Restoration of Guang-dong Higher Education Institutes, Beijing Normal University, Zhuhai, 519087, China.

Since the Industrial Revolution, anthropogenic activities have substantially increased the input of nitrogen (N) and phosphorus (P) into river watersheds, exacerbated by uncertainties stemming from climate change. This study provided a detailed analysis of N and P inputs within the Dawen River Watershed in China from 2000 to 2021. The Net Anthropogenic Nitrogen Input (NANI) and Net Anthropogenic Phosphorus Input (NAPI) methods were used in study, which aimed to investigate how they respond to various climate change factors.

View Article and Find Full Text PDF

Coastal lagoons are diverse habitats with significant ecological gradients, which provide crucial ecosystem services but face threats from human activities such as invasive species and pollution. Among the species inhabiting the lagoons, the critically endangered European eel (Anguilla anguilla) is an emblematic species strongly impacted by contamination and parasitism. Several indicators were developed to assess the quality of eel at a large geographic scale.

View Article and Find Full Text PDF

Arsenic mobility and microbial community composition in the sediments of coastal wetlands driven by tidal action.

J Environ Sci (China)

July 2025

School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Ecology and Pollution Control of Coastal Wetlands, Yancheng 224051, China.

Arsenic (As) pollution in coastal wetlands has been receiving growing attention. However, the exact mechanism of As mobility driven by tidal action is still not completely understood. The results reveal that lower total As concentrations in solution were observed in the flood-ebb treatment (FE), with the highest concentration being 7.

View Article and Find Full Text PDF

Presence and potential impact of anthropogenic nesting materials on a colonial breeding waterbird.

Sci Total Environ

January 2025

Dep. Biologia & CESAM - Centre for Environmental and Marine Studies, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; South Iceland Research Centre, University of Iceland, Lindarbraut 4, 840-IS Laugarvatn, Iceland.

Despite the vital importance of wetlands globally, these habitats have increasingly received anthropogenic materials, such as plastics, which can impact the wildlife these habitats support. Despite commonly found in the nests of Eurasian spoonbill (Platalea leucorodia), the presence of such materials has never been quantified. Here, we monitored the occurrence of anthropogenic nesting materials (ANM) in spoonbill nests in the Camargue wetland in Southern France during two breeding seasons (2021-2022).

View Article and Find Full Text PDF

Vegetation Types Shift Physiological and Phenological Controls on Carbon Sink Strength in a Coastal Zone.

Glob Chang Biol

January 2025

Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China.

The carbon sink function performed by the different vegetation types along the environmental gradient in coastal zones plays a vital role in mitigating climate change. However, inadequate understanding of its spatiotemporal variations across different vegetation types and associated regulatory mechanisms hampers determining its potential shifts in a changing climate. Here, we present long-term (2011-2022) eddy covariance measurements of the net ecosystem exchange (NEE) of CO at three sites with different vegetation types (tidal wetland, nontidal wetland, and cropland) in a coastal zone to examine the role of vegetation type on annual carbon sink strength.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!