Objective: To assess the relevance of correct identification and interpretation of susceptibility testing of Aeromonas spp. bacteremia isolates using newly developed molecular methods in comparison to previous conventional methods.
Material And Methods: The study included 22 patients with bacteremia due to Aeromonas hydrophila group, microbiologically characterized using the MicroScan system. Further identification to species level was performed by mass spectrometry, and confirmed by sequencing the rpoB gene. The MIC of imipenem, cefotaxime, piperacillin-tazobactam, ciprofloxacin and cotrimoxazole was studied using a commercial broth microdilution and antibiotic gradient strips with low and high inocula. Detection of carbapenemase production was performed using the modified Hodge test, and was confirmed by amplifying the cphA gene by PCR.
Results: A total of 9 (40.9%) isolates were identified as Aeromonas hydrophila, 8 (36.4%) as Aeromonas veronii, and the remaining 5 (22.7%) isolates as Aeromonas caviae. Resistance to beta-lactams according to both the commercial microdilution and MIC gradient strips methods was: 36%-50% to imipenem; 4%-56% to cefotaxime, and 27%-56% to piperacillin/tazobactam. The agreement between results generated by the automated system and the diffusion antibiotic gradient strip was, for all 3 species, 68% for imipenem, 50% to cefotaxime, and 46% to piperacillin/tazobactam. No resistance to cotrimoxazole and ciprofloxacin was found by either of the two methods, although 22.7% of the strains were resistant to nalidixic acid.
Conclusions: It is essential to identify the isolates of Aeromonas spp. at the species level, due to the fact that beta-lactam resistance is species- and method-dependent. The high rate of resistance to beta-lactam and quinolones reduce their application as empiric treatments for invasive infection by Aeromonas ssp.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.eimc.2015.02.020 | DOI Listing |
Environ Microbiol Rep
February 2025
Faculty of Engineering, Department of Chemistry, Istanbul University-Cerrahpaşa, Istanbul, Türkiye.
Marine mucilage disasters, primarily caused by global warming and marine pollution, threaten food security and the sustainability of marine food resources. This study assessed the microbial risks to public health in common sole, deep-water rose shrimp, European anchovy, Atlantic horse mackerel and Mediterranean mussel following the mucilage disaster in the Sea of Marmara in 2021. The total viable count, total Enterobacteriaceae count and the presence of Escherichia coli O157:H7, Salmonella spp.
View Article and Find Full Text PDFGut Pathog
January 2025
Microba Pty Ltd, Brisbane, Australia.
Background: Accurate and comprehensive identification of enteropathogens, causing infectious gastroenteritis, is essential for optimal patient treatment and effective isolation processes in health care systems. Traditional diagnostic techniques are well established and optimised in low-cost formats. However, thorough testing for a wider range of causal agents is time consuming and remains limited to a subset of pathogenic organisms.
View Article and Find Full Text PDFBraz J Microbiol
January 2025
ICAR-Central Institute of Fisheries Technology (ICAR-CIFT), Willingdon Island, Cochin, Kerala, 682029, India.
Aeromonas inhabit diverse aquatic habitats and are recognized as both opportunistic and primary pathogens of fish and humans. This study delineates the biochemical and gyrB sequence-based molecular identification of 14 Aeromonas strains isolated from aquatic environments in Kerala, India, identifying them as A. dhakensis (50%), A.
View Article and Find Full Text PDFFoods
December 2024
Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159, 02-787 Warsaw, Poland.
The aim of the study was to assess the bacterial flora of broiler chicken breast meat using the MALDI method, as well as its sensory evaluation while stored refrigerated at a stable temperature (0.5 °C+/-0.5 °C).
View Article and Find Full Text PDFBMJ Open
January 2025
Enteric Zoonotic and Vector-Borne Disease Laboratory, Royal Centre for Disease Control, Thimphu, Bhutan.
Objectives: This study aimed to identify the aetiological spectrum, seasonal distribution and antimicrobial resistance patterns of diarrhoeal diseases in Bhutan.
Study Design And Setting: The study used a cross-sectional, retrospective analysis of secondary data gathered through a passive, hospital-based sentinel surveillance for diarrhoeal disease across 12 hospitals, representing Bhutan's demographically diverse regions.
Participants: A total of 3429 participants' data of all age groups who presented with diarrhoea at sentinel hospitals between 1 January 1 2016 and 31 December 2022 were analysed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!