A reproducible route for tuning localized surface plasmon resonance in scattering type near-field optical microscopy probes is presented. The method is based on the production of a focused-ion-beam milled single groove near the apex of electrochemically etched gold tips. Electron energy-loss spectroscopy and scanning transmission electron microscopy are employed to obtain highly spatially and spectroscopically resolved maps of the milled probes, revealing localized surface plasmon resonance at visible and near-infrared wavelengths. By changing the distance L between the groove and the probe apex, the localized surface plasmon resonance energy can be fine-tuned at a desired absorption channel. Tip-enhanced Raman spectroscopy is applied as a test platform, and the results prove the reliability of the method to produce efficient scattering type near-field optical microscopy probes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.5b01794DOI Listing

Publication Analysis

Top Keywords

localized surface
16
surface plasmon
16
plasmon resonance
16
near-field optical
12
optical microscopy
12
microscopy probes
12
tuning localized
8
scattering type
8
type near-field
8
surface
4

Similar Publications

Ultrastructural expansion microscopy (U-ExM) visualization of malaria parasite dense granules using RESA as a representative marker protein.

Parasitol Int

December 2024

Divisions of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan. Electronic address:

Dense granules (DG) are understudied apical organelles in merozoites, the malaria parasite stage that invades erythrocytes. Only six proteins have been identified which localize to DGs, despite that DG proteins play crucial roles in multiple steps of intraerythrocytic parasite development. To develop a tool for investigating DG structure and function, this study applied ultrastructural expansion microscopy (U-ExM) to visualize the ring-infected erythrocyte surface antigen (RESA) in Plasmodium falciparum merozoites.

View Article and Find Full Text PDF

Biomimetic membrane-coated nanoparticles specially permeate the inflammatory blood-brain barrier to deliver plasmin therapy for brain metastases.

J Control Release

December 2024

Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China. Electronic address:

Many brain-targeting drug delivery strategies have been reported to permeate the blood-brain barrier (BBB) via hijacking receptor-mediated transport. However, these receptor-based strategies could mediate whole-brain BBB crossing due to the wide intracranial expression of target receptors and lead to unwanted accumulation and side effects on healthy brain tissues. Inspired by brain metastatic processes and the selectivity of brain metastatic cancer cells for the inflammatory BBB, a biomimetic nanoparticle was developed by coating drug-loaded core with the inflammatory BBB-seeking erythrocyte-brain metastatic hybrid membrane, which can resist homotypic aggregation and specially bind and permeate the inflammatory BBB for specific drug delivery.

View Article and Find Full Text PDF

BiWO@CuO-GO bio-heterojunction spray for accelerating chronic diabetic wound repairment with bilaterally enhanced sono-catalysis and glycolytic inhibition antisepsis.

Biomaterials

December 2024

Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, PR China. Electronic address:

Chronic diabetic wound poses a pressing global healthcare challenge, necessitating an approach to address issues such as pathogenic bacteria elimination, blood sugar regulation, and angiogenesis stimulation. Herein, we engineered a BiWO@CuO-GOx bio-heterojunction (BWCG bio-HJ) with exceptional cascade catalytic performance and impressive sonosensitivity to remodel the wound microenvironment and expedite the diabetic wound healing. Specifically, the Z-scheme junctions of BiWO@CuO significantly augmented carrier separation dynamics, leading to the highly efficient generation of reactive oxygen species (ROS) upon US irradiations.

View Article and Find Full Text PDF

Deciphering Surface-Localized Structure of Nanodiamonds.

Nanomaterials (Basel)

December 2024

Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China.

Nanomaterials, heralded as the "new materials of the 21st century" for their remarkable physical and chemical properties and broad application potential, have attracted substantial attention in recent years. Among these materials, which challenge traditional physical boundaries, nanodiamonds (NDs) are widely applied across diverse industries due to their exceptional surface multifunctionality and chemical stability. Nevertheless, atomic-level manipulation of NDs presents considerable challenges, which require detailed structural analysis to thoroughly elucidate their properties.

View Article and Find Full Text PDF

Visualization and Estimation of 0D to 1D Nanostructure Size by Photoluminescence.

Nanomaterials (Basel)

December 2024

Institute of Photonics and Nanotechnology, Faculty of Physics, Vilnius University, Saulėtekio Ave. 3, 10257 Vilnius, Lithuania.

We elaborate a method for determining the 0D-1D nanostructure size by photoluminescence (PL) emission spectrum dependence on the nanostructure dimensions. As observed, the high number of diamond-like carbon nanocones shows a strongly blue-shifted PL spectrum compared to the bulk material, allowing for the calculation of their top dimensions of 2.0 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!