We assemble bistable silicon quantum dots consisting of four buckled atoms (Si4-QD) using atom manipulation. We demonstrate two competing atom switching mechanisms, downward switching induced by tunneling current of scanning tunneling microscopy (STM) and opposite upward switching induced by atomic force of atomic force microscopy (AFM). Simultaneous application of competing current and force allows us to tune switching direction continuously. Assembly of the few-atom Si-QDs and controlling their states using versatile combined AFM/STM will contribute to further miniaturization of nanodevices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.5b00448 | DOI Listing |
Chem Sci
December 2024
VASP Software GmbH Berggasse 21 A-1090 Vienna Austria.
Constructing a self-consistent first-principles framework that accurately predicts the properties of electron transfer reactions through finite-temperature molecular dynamics simulations is a dream of theoretical electrochemists and physical chemists. Yet, predicting even the absolute standard hydrogen electrode potential, the most fundamental reference for electrode potentials, proves to be extremely challenging. Here, we show that a hybrid functional incorporating 25% exact exchange enables quantitative predictions when statistically accurate phase-space sampling is achieved thermodynamic integrations and thermodynamic perturbation theory calculations, utilizing machine-learned force fields and Δ-machine learning models.
View Article and Find Full Text PDFEvid Based Dent
January 2025
Doctoral Research Fellow and Specialty Trainee (Endodontics), School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK.
Aims: This study aimed to assess the effectiveness of a novel antimicrobial gel, containing copper and silver nanoparticles, for use in root canal disinfection.
Methods: Copper and silver-based gels were created in-house, using a support network of biocompatible polymers, including polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and polyethylene glycol (PEG). Six experimental groups were created, three containing silver ions and three copper ions, where the PVA, PVP and PEG ratios were also adjusted in each group to test the gel's physical state.
J Mol Model
January 2025
Department of Chemistry, Birla Institute of Technology and Science Pilani - K. K. Birla Goa Campus, Zuarinagar, 403726, Goa, India.
Context: There has been growing interest in amino acid ionic liquids because of their low-cost synthesis and superior biodegradability and biocompatibility compared to traditional ionic liquids. In this study, we have investigated the structure and dynamics of three ionic liquids consisting of N-butyl N-methyl piperidinium [Pip] cation with amino acid (lysine [Lys], histidine [His], and arginine [Arg]) anions. The radial distribution functions, the spatial distribution functions, and the coordination numbers have been used to analyze the structure in the bulk phase.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudziądzka 5, 87-100, Toruń, Poland.
Due to their simple structure (two bond species randomly arranged on a cubic lattice), the zincblende ABC semiconductor alloys (zb-SCA) set a benchmark to explore how physical properties are impacted by disorder. A longstanding controversy was whether the lattice dynamics (phonons), governed by the bond force constant, i.e.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Physics, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates.
Self-assembled gold nanoparticles (Au-NPs) possess distinctive properties that are highly desirable in diverse nanotechnological applications. This study meticulously explores the size-dependent behavior of Au-NPs under an electric field, specifically focusing on sizes ranging from 5 to 40 nm, and their subsequent assembly into 2D monolayers on an n-type silicon substrate. The primary objective is to refine the assembly process and augment the functional characteristics of the resultant nanostructures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!