This paper focuses on the development and physicochemical characterization of a self-microemulsifying drug delivery system (SMEDDS) containing a fixed-dose combination of atorvastatin (ATR) and ezetimibe (EZT). The solubility of both drugs was determined in excipient screening studies. Ternary-phase diagrams were drawn for 27 systems composed of different surfactants, cosurfactants, and oils at different surfactant-to-cosurfactant (S/CoS) ratios, and the system exhibiting the largest percentage area of the self-microemulsifying region was selected. The optimum oil ratio in the SMEDDS was selected by evaluating the mean droplet size of the resultant microemulsions. The underlying mechanism of the lower ATR loading capacity compared with EZT was elucidated by measurement of the zeta potential and UV absorption analysis. The results implied that ATR was located exclusively in the surfactant-cosurfactant layer, whereas EZT was located both in the microemulsion core and the surfactant-cosurfactant layer. In vitro dissolution studies showed that the SMEDDS had higher initial dissolution rates for both drugs when compared with marketed products. More importantly, EZT had a significantly increased dissolution profile in distilled water and pH 4.0 acetate buffer, implying enhanced bioavailability.

Download full-text PDF

Source
http://dx.doi.org/10.1248/cpb.c14-00814DOI Listing

Publication Analysis

Top Keywords

self-microemulsifying drug
8
drug delivery
8
delivery system
8
fixed-dose combination
8
combination atorvastatin
8
surfactant-cosurfactant layer
8
formulation vitro
4
vitro evaluation
4
evaluation self-microemulsifying
4
system fixed-dose
4

Similar Publications

The repurposing of statins as neuroprotective agents and/or anti-brain tumor drugs is limited by challenges in brain bioavailability and systemic off-target effects. Therefore, improved and targeted delivery of statins to the brain is necessary. This study aimed to develop a high-strength liquid formulation of the poorly soluble prodrug simvastatin for intranasal administration, as a strategy to achieve high brain concentrations of the prodrug and/or its active form, tenivastatin.

View Article and Find Full Text PDF

Enhanced efficacy of essential oil in fish anesthesia using nanoemulsions and self-microemulsifying drug delivery systems.

Front Vet Sci

November 2024

Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.

Article Synopsis
  • The study explores the use of plant essential oils, specifically MDO, as alternatives to ethanol for anesthetizing fish, highlighting MDO's potential benefits.
  • Researchers developed nanoemulsion (NE) and self-microemulsifying drug delivery systems (SMEDDS) to enhance MDO's anesthetic efficacy, confirming their stability and effectiveness through various tests.
  • Results showed that these new formulations induced anesthesia faster and did not harm the fish's respiratory function, indicating a safer option for aquatic anesthesia compared to traditional methods.
View Article and Find Full Text PDF

The lack of local availability for drugs in the colon can be addressed by preparing a self-microemulsifying drug delivery system (SMEDDS) of curcumin (Cur) which is ultimately used for the treatment of inflammatory bowel disease (IBD). From preformulation studies, Lauroglycol FCC (oil), Tween 80 (surfactant), Transcutol HP (co-surfactant), and Avicel (solid carrier) were selected for the preparation of blank liquid and solid Cur-loaded SMEDDSs (S-Cur-SMEDDSs). Z-average size (12.

View Article and Find Full Text PDF

Customizable Self-Microemulsifying Rectal Suppositories by Semisolid Extrusion 3D Printing.

Pharmaceutics

October 2024

BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE, MRC), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea.

: This study aims to create an innovative self-microemulsifying drug delivery system (SMEDDS) suppository for ibuprofen (IBU) using semisolid extrusion (SSE) three-dimensional (3D) printing technology. : Based on solubility studies and the ability to form a transparent microemulsion upon dilution, a selected oil, surfactant, and co-surfactant were utilized to prepare SMEDDS-3DPS containing IBU. The optimal formulation consisted of 10% Triacetin, 80% Gelucire 48/16, and 10% Tetraethylene glycol.

View Article and Find Full Text PDF

Background: Voriconazole is an antifungal drug, which is classified under Bio-Classification System-II and has low water solubility (0.71 mg/mL) and high permeability. Hardly any endeavors have been made to increase the bioavailability of voriconazole.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!