The genetic diversity of Yersinia pestis strains from the Mongolian natural plague foci has been investigated. A total of 32 strains isolated from western, eastern, and central aimaks, as well as from the territory of the Gobi region, have been studied. Twenty-four strains belong to the main Y. pestis subspecies, while eight belong to other subspecies. There is only one strain of biovar medievalis (genovariant 2.MED1) among the strains of the main subspecies, while the rest of the subspecies belong to the biovar antiqua. Biovar antiqua strains are split into three groups. Strains from the eastern part of the country were classified as genovariant 2.ANT3, and those from the western and central regions were classified as genovariant 3.ANT2, which was endemic for Mongolia. One strain from the Bayan-Ulegeiskii aimak had the rare genovariant 4.ANT. None of the strains of the biovar antiqua belonged to its ancient 0.ANT branch, which is inconsistent with the commonly accepted idea that ancient marmot's plague agent race originates from Mongolia. Six out of eight strains of the minor subspecies belonged to the ulegeica subspecies, which are endemic to Mongolia, one strain belonged to the microtus group, and the last belonged to a previously uncharacterized variant of the minor subspecies.

Download full-text PDF

Source

Publication Analysis

Top Keywords

biovar antiqua
12
strains
9
plague agent
8
strains mongolian
8
subspecies belong
8
classified genovariant
8
endemic mongolia
8
mongolia strain
8
minor subspecies
8
subspecies
7

Similar Publications

Streptomycin is considered to be one of the effective antibiotics for the treatment of plague. In order to investigate the streptomycin resistance of Y. pestis in China, we evaluated streptomycin susceptibility of 536 Y.

View Article and Find Full Text PDF

The main purpose of this study was to clarify the role of gray marmots () in the long-term maintenance of highly virulent strains of in two plague endemic foci of the Tien Shan Mountains in Kyrgyzstan. We present data from regular observations of populations of and small rodents cohabiting with marmots in the mountainous grasslands of the Sari-Dzhas (east of Issyk-Kul Lake) and the Upper-Naryn (south of Issyk-Kul Lake) natural foci. During 2012-2017, an abundance of marmots and their ectoparasites (fleas and ticks) was significantly higher in Upper-Naryn comparing to Sari-Dzhas, although there were no differences in a number and diversity of small rodents cohabiting with marmots.

View Article and Find Full Text PDF

is the etiological agent of the notorious plague that has claimed millions of deaths in history. Of the four known biovars (Antiqua, Medievalis, Orientalis, and Microtus), Microtus strains are unique for being highly virulent in mice but avirulent in humans. Here, human peripheral lymphocytes were infected with the fully virulent 141 strain or the Microtus strain 201, and their transcriptomes were determined and compared.

View Article and Find Full Text PDF

Plague is a flea-borne rodent-associated zoonotic disease caused by The disease is characterized by epizootics with high rodent mortalities, punctuated by interepizootic periods when the bacterium persists in an unknown reservoir. This study investigates the interaction between and the ubiquitous soil free-living amoeba (FLA) to assess if the bacterium can survive within soil amoebae and whether intracellular mechanisms are conserved between infection of mammalian macrophages and soil amoebae. The results demonstrate that during coculture with amoebae, representative strains of epidemic biovars Medievalis, Orientalis, and Antiqua are phagocytized and able to survive within amoebae for at least 5 days.

View Article and Find Full Text PDF

The genetic diversity of Yersinia pestis strains from the Mongolian natural plague foci has been investigated. A total of 32 strains isolated from western, eastern, and central aimaks, as well as from the territory of the Gobi region, have been studied. Twenty-four strains belong to the main Y.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!