Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This review analyzes the issues associated with biodegradation of glyphosate (N-(phosphonomethyl)glycine), one of the most widespread herbicides. Glyphosate can accumulate in natural environments and can be toxic not only for plants but also for animals and bacteria. Microbial transformation and mineralization ofglyphosate, as the only means of its rapid degradation, are discussed in detail. The different pathways of glyphosate catabolism employed by the known destructing bacteria representing different taxonomic groups are described. The potential existence of alternative glyphosate degradation pathways, apart from those mediated by C-P lyase and glyphosate oxidoreductase, is considered. Since the problem of purifying glyphosate-contaminated soils and water bodies is a topical issue, the possibilities of applying glyphosate-degrading bacteria for their bioremediation are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.7868/s0555109915020221 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!