The sufC gene of Escherichia coli (E. coli) is required for the biogenesis of iron-sulfur (Fe-S) cluster under oxidative stress conditions. In order to investigate the roles of sufC in Salmonella enterica serovar Typhi (S. Typhi), isogenic S. Typhi strain GIFU10007 harboring a non-polar mutation of sufC (ΔsufC) was constructed and the results showed that the sufC deleted mutant grew more slowly than the wild type strain when encounter oxidative stresses. Moreover, the deletion of sufC gene decreased S. Typhi survival within macrophages. After macrophages infected by sufC deleted mutant and wild type strain, we detected IL-6 and TNF-α released into the supernatant, and found the expression of IL-6 and TNF-α decreased in the supernatant of sufC deleted mutant infected groups than the wild type strain infected ones. In summary, our results showed that SufC may promote S. Typhi coping oxidative stress and help S. Typhi survival in macrophages.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micpath.2015.05.006DOI Listing

Publication Analysis

Top Keywords

sufc deleted
12
deleted mutant
12
wild type
12
type strain
12
sufc
9
sufc promote
8
salmonella enterica
8
enterica serovar
8
serovar typhi
8
sufc gene
8

Similar Publications

Multiple factors regulate the expression of in .

Front Cell Infect Microbiol

December 2024

Department of Oral and Craniofacial Biology, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, United States.

Introduction: The gene cluster, encoding the sole iron-sulfur (Fe-S) cluster assembly system in , was recently shown to be up-regulated in response to oxidative stressors and Fe limitation.

Methods: In this study, luciferase reporter fusion assays, electrophoretic gel mobility shift assays (EMSA) and transcription assays (IVT) were used to dissect the and acting factors that regulate the expression of .

Results And Discussion: Results showed deletion of , for the only Fur-family transcriptional regulator in , resulted in >5-fold increases in luciferase activity under the control of the promoter (P<0.

View Article and Find Full Text PDF

Identification of Genes Involved in Fe-S Cluster Biosynthesis of Nitrogenase in WLY78.

Int J Mol Sci

April 2021

State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing 100193, China.

NifS and NifU (encoded by and ) are generally dedicated to biogenesis of the nitrogenase Fe-S cluster in diazotrophs. However, and are not found in N-fixing strains, and the mechanisms involved in Fe-S cluster biosynthesis of nitrogenase is not clear. Here, we found that the genome of WLY78 contains the complete operon, a partial operon, a -like gene, two -like genes (-like and ), and two genes.

View Article and Find Full Text PDF

Structural and spectroscopic analysis of iron-sulfur [Fe-S] cluster-containing proteins is often limited by the occupancy and yield of recombinantly produced proteins. Here we report that BL21(DE3), a strain routinely used to overproduce [Fe-S] cluster-containing proteins, has a nonfunctional Suf pathway, one of two [Fe-S] cluster biogenesis pathways. We confirmed that BL21(DE3) and commercially available derivatives carry a deletion that results in an in-frame fusion of and genes within the operon.

View Article and Find Full Text PDF

A set of 3907 single-gene knockout (Keio collection) strains of Escherichia coli K-12 was examined for strains with increased susceptibility to killing by X- or UV-radiation. After screening with a high-throughput resazurin-based assay and determining radiation survival with triplicate clonogenic assays, we identified 76 strains (and associated deleted genes) showing statistically-significant increased radiation sensitivity compared to a control strain. To determine gene novelty, we constructed a reference database comprised of genes found in nine similar studies including ours.

View Article and Find Full Text PDF

SufC may promote the survival of Salmonella enterica serovar Typhi in macrophages.

Microb Pathog

August 2015

Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, PR China. Electronic address:

The sufC gene of Escherichia coli (E. coli) is required for the biogenesis of iron-sulfur (Fe-S) cluster under oxidative stress conditions. In order to investigate the roles of sufC in Salmonella enterica serovar Typhi (S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!