Low Voltage Transmission Electron Microscopy in Cell Biology.

Prog Histochem Cytochem

Delong America Inc., Montreal, Quebec, Canada.

Published: July 2015

Low voltage transmission electron microscopy (LVTEM) was employed to examine biological tissues with accelerating voltages as low as 5kV. Tissue preparation was modified to take advantage of the low-voltage techniques. Treatments with heavy metals, such as post-fixation with osmium tetroxide, on block and counterstaining were omitted. Sections (40nm) were thinner than usual and generated highly contrasted images. General appearance of the cells remains similar to that of conventional TEM. New features were however revealed. The matrix of the pancreatic granules displays heterogeneity with partitions that may correspond to the inner-segregation of their secretory proteins. Mitochondria revealed the presence of the ATP synthase granules along their cristea. The nuclear dense chromatin displayed a honeycomb organization while distinct beads, nucleosomes, aligned along thin threads were seen in the dispersed chromatin. Nuclear pore protein complexes revealed their globular nature. The intercalated disks in cardiac muscle displayed their fine structural organization. These features correlate well with data described or predicted by cell and molecular biology. These new aspects are not revealed when thicker and conventionally osmicated tissue sections were examined by LVTEM, indicating that major masking effects are associated with standard TEM techniques. Immunogold was adapted to LVTEM further enhancing its potential in cell biology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.proghi.2015.05.001DOI Listing

Publication Analysis

Top Keywords

low voltage
8
voltage transmission
8
transmission electron
8
electron microscopy
8
cell biology
8
microscopy cell
4
biology low
4
microscopy lvtem
4
lvtem employed
4
employed examine
4

Similar Publications

Constructing an Organic-Inorganic Hybrid Solid-Electrolyte Interface In Situ via an Organo-Polysulfide Electrolyte Additive for Lithium-Sulfur Batteries.

ACS Appl Mater Interfaces

January 2025

School of Material Science and Engineering, Jiangsu Collaborative Innovation Center for Photovoltaic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University, Changzhou 213164, China.

Lithium (Li) metal's extremely high specific energy and low potential make it critical for high-performance batteries. However, uncontrolled dendrite growth and an unstable solid-electrolyte interphase (SEI) during repeated cycling still seriously hinder its practical application in Li metal batteries. Herein, we demonstrate a facile and effective approach to fabricate a flexible and robust hybrid SEI layer using two kinds of organo-polysulfides with different sulfur chain lengths [bis(3-(triethoxysilyl)propyl)disulfide (Si-O-2S) and bis(3-(triethoxysilyl)propyl)tetrasulfide (Si-O-4S)] as the additives in the electrolyte.

View Article and Find Full Text PDF

Outcomes of electrical injuries in the emergency department: epidemiology, severity predictors, and chronic sequelae.

Eur J Trauma Emerg Surg

January 2025

Emergency Department, Habib bourguiba university hospital, Faculty of Medicine, Sfax University, Majida Boulila Avenue, Sfax, Tunisia.

Introduction: Electrical injuries (EIs) represent a significant clinical challenge due to their complex pathophysiology and variable presentation, ranging from minor burns to severe internal organ damage. Despite their prevalence in both; domestic and occupational settings, there remains a rareness of systematic guidelines and comprehensive literature to aid clinicians in effectively managing these injuries. Understanding these factors is crucial for developing protocols that can mitigate the risk of delayed complications, such as cardiac arrhythmias, in patients who initially appear stable.

View Article and Find Full Text PDF

An aqueous zinc-ion battery with an organic-inorganic nanohybrid cathode featuring high operating voltage and long-term stability.

Chem Commun (Camb)

January 2025

Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh 201314, India.

Cathode materials with both high capacity and high operating voltage are essential for advancing aqueous zinc-ion batteries (ZIBs). Conventional high-capacity materials, such as vanadium-based compounds, typically deliver low discharge voltages. In contrast, organic cathodes show high operating voltages but often exhibit limited capacity.

View Article and Find Full Text PDF

Germanium nanocrystal non-volatile memory devices: fabrication, charge storage mechanism and characterization.

Nanoscale

January 2025

Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583.

The widespread proliferation and increasing use of portable electronic devices and wearables, and the recent developments in artificial intelligence and internet-of-things, have fuelled the need for high-density and low-voltage non-volatile memory devices. Nanocrystal memory, an emergent non-volatile memory (NVM) device that makes use of the Coulomb blockade effect, can potentially result in the scaling of the tunnel dielectric layer to a very small thickness. Since the nanocrystals are electrically isolated, potential charge leakage paths localized defects in the thin tunnel dielectric can be substantially reduced, unlike that in a continuous polysilicon floating gate structure.

View Article and Find Full Text PDF

A novel poly(amidoamine)-modified electrolyte-insulator-semiconductor-based biosensor for label-free detection of ATP.

Anal Methods

January 2025

Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.

Adenosine triphosphate (ATP) is crucial for cellular activity. The need for ATP detection in the field of biomedicine is rapidly increasing. Several biosensor-based approaches have been developed as a result of the growing demand for ATP detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!