AI Article Synopsis

  • Obesity impacts around 20% of people globally, and exercise is a key non-drug treatment for it.
  • A study explored how combining exercise with low-level laser therapy (LLLT) affects fat cells and muscle health in rats.
  • Results showed that the combination of exercise and LLLT boosts enzyme activity and reduces fat cell size in obese rats, making exercise more effective.

Article Abstract

Obesity affects approximately 20% of the world population, and exercise is the primary non-pharmacological therapy. The combined use of exercise and low-level laser therapy (LLLT) may potentiate the effects promoted by exercise. The objective of this study was to investigate the effects of exercise in combination with phototherapy on adipocyte area, activity of the enzyme citrate synthase and muscle morphological analysis. We used 64 Wistar rats, which were divided into eight groups with 8 rats each: sedentary chow-diet (SC); sedentary chow-diet plus laser therapy (SCL), exercised chow-diet (EC); exercised chow-diet plus laser therapy (ECL); sedentary high-fat diet (SH); sedentary high-fat diet plus laser therapy (SHL); exercised high-fat diet (EH); exercised high-fat diet, laser therapy (EHL). The animals were submitted to a program of swimming training for 90min/5 times per week for 8weeks and LLLT (GA-Al-AS, 830nm) at a dose of 4.7J/point and a total energy of 9.4J/animal, with duration of 47s, which was applied to both gastrocnemius muscles after exercise. We conclude that the combined use of exercise and phototherapy increases the activity of the enzyme citrate synthase and decreases the white adipocyte area epididymal, retroperitoneal and visceral in obese rats, enhancing the effects of exercise.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2015.04.033DOI Listing

Publication Analysis

Top Keywords

laser therapy
24
high-fat diet
16
low-level laser
8
exercise
8
combined exercise
8
effects exercise
8
adipocyte area
8
activity enzyme
8
enzyme citrate
8
citrate synthase
8

Similar Publications

The tumor-specific efficacy of the most current anticancer therapeutic agents, including antibody-drug conjugates (ADCs), oligonucleotides, and photosensitizers, is constrained by limitations such as poor cell penetration and low drug delivery. In this study, we addressed these challenges by developing, a positively charged, amphiphilic Chlorin e6 (Ce6)-conjugated, cell-penetrating anti-PD-L1 peptide nanomedicine (CPPD1) with enhanced cell and tissue permeability. The CPPD1 molecule, a bioconjugate of a hydrophobic photosensitizer and strongly positively charged programmed cell death-ligand 1 (PD-L1) binding cell-penetrating peptide (CPP), is capable of self-assembling into nanoparticles with an average size of 199 nm in aqueous solution without the need for any carriers.

View Article and Find Full Text PDF

Group IV Bimetallic MOFs Engineering Enhanced Metabolic Profiles Co-Predict Liposarcoma Recognition and Classification.

Small Methods

January 2025

Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Department of Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.

The rarity and heterogeneity of liposarcomas (LPS) pose significant challenges in their diagnosis and management. In this work, a series of metal-organic frameworks (MOFs) engineering is designed and implemented. Through comprehensive characterization and performance evaluations, such as stability, thermal-driven desorption efficiency, as well as energy- and charge-transfer capacity, the engineering of group IV bimetallic MOFs emerges as particularly noteworthy.

View Article and Find Full Text PDF

Magnetic field-induced synergistic therapy of cancer using magnetoplasmonic nanoplatform.

Mater Today Bio

February 2025

Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.

Combining photothermal and chemotherapy using single nanoplatform is an emerging direction in cancer nanomedicine. Herein, a magnetic field (MF) induced combination of chemo/photothermal therapy is demonstrated using FeO@mSiO@Au core@shell@satellites nanoparticles (NPs) loaded with chemotherapeutic drug doxorubicin (DOX), both and An application of an external MF to the NPs dispersion causes magnetophoretic movement and aggregation of the NPs. While the synthesized NPs only slightly absorb light at ∼800 nm, their aggregation results in a significant near infrared (NIR) absorption associated with plasmon resonance coupling between the Au satellites in the NPs aggregates.

View Article and Find Full Text PDF

Purpose: The aim of the current study was to evaluate changes in choroidal circulation hemodynamics after periocular skin warming at 40°C using laser speckle flowgraphy (LSFG).

Methods: Twenty-four right eyes of 24 healthy participants were included. Changes in choroidal circulation hemodynamics were determined using LSFG to evaluate the mean blur rate (MBR) of the macula, which represents choroidal blood flow velocity.

View Article and Find Full Text PDF

Ce6-GFFY is a novel photosensitizer for colorectal cancer therapy.

Genes Dis

March 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China.

Photodynamic therapy is an "old" strategy for cancer therapy featuring clinical safety and rapid working, but suitable photosensitizers for colorectal cancer therapy remain lacking. This study synthesized a novel photosensitizer termed Ce6-GFFY based on a self-assembling peptide GFFY and a photo-responsive molecule chlorin e6 (Ce6). Ce6-GFFY forms macroparticles with a diameter of ∼160 nm and possesses a half-life of 10 h, as well as an ideal tumor-targeting ability in mouse models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!