A diagnostic tool for precise alignment of targets in laser-matter interactions based on confocal microscopy is presented. This device permits precision alignment of targets within the Rayleigh range of tight focusing geometries for a wide variety of target surface morphologies. This confocal high-intensity positioner achieves micron-scale target alignment by selectively accepting light reflected from a narrow range of target focal planes. Additionally, the design of the device is such that its footprint and sensitivity can be tuned for the desired chamber and experiment. The device has been demonstrated to position targets repeatably within the Rayleigh range of the Scarlet laser system at The Ohio State University, where use of the device has provided a marked increase in ion yield and maximum energy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4921554 | DOI Listing |
bioRxiv
November 2024
Department of Pharmacology, University of Washington, Seattle, WA, USA.
Eukaryotic nuclei adopt a highly compartmentalized architecture that influences nearly all genomic processes. Understanding how this architecture impacts gene expression has been hindered by a lack of tools for elucidating the molecular interactions at individual genomic loci. Here, we adapt oligonucleotide-mediated proximity-interactome mapping (O-MAP) to biochemically characterize discrete, micron-scale nuclear neighborhoods.
View Article and Find Full Text PDFMicrosc Microanal
November 2024
Radioisotope Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
The production of plutonium-238 through irradiation of neptunium-237 (237Np) target materials for the use in radioisotope thermoelectric generators is paramount for continued deep space exploration. This work employs scanning electron microscopy to analyze 237Np materials coupled with a well-developed image analysis framework (Morphological Analysis for Material Attribution, or MAMA) to determine the degree of micron-scale homogeneity in the materials. This work demonstrated how the quantification of particle characteristics can validate production materials and affirm the qualitative similarities observed in micrographs.
View Article and Find Full Text PDFNpj Imaging
November 2024
Center for Life Nano- & Neuro-Science, Italian Institute of Technology, Rome, Italy.
In super-resolution, a varying illumination image stack is required. This enriched dataset typically necessitates precise mechanical control and micron-scale optical alignment and repeatability. Here, we introduce a novel methodology for super-resolution microscopy called stochastically structured illumination microscopy (SIM), which bypasses the need for illumination control exploiting instead the random, uncontrolled movement of the target object.
View Article and Find Full Text PDFFront Pharmacol
October 2024
Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!