Avalanche photodiodes are commonly used as detectors for low energy x-rays. In this work, we report on a fitting technique used to account for different detector responses resulting from photoabsorption in the various avalanche photodiode layers. The use of this technique results in an improvement of the energy resolution at 8.2 keV by up to a factor of 2 and corrects the timing information by up to 25 ns to account for space dependent electron drift time. In addition, this waveform analysis is used for particle identification, e.g., to distinguish between x-rays and MeV electrons in our experiment.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4921195DOI Listing

Publication Analysis

Top Keywords

particle identification
8
avalanche photodiodes
8
improved x-ray
4
x-ray detection
4
detection particle
4
identification avalanche
4
photodiodes avalanche
4
photodiodes commonly
4
commonly detectors
4
detectors low
4

Similar Publications

Background: Tubular injury triggered by hyperglycemia is an important pathological characteristic in diabetic nephropathy (DN). Accumulated advanced glycation end products and their precursor methylglyoxal (MGO), contribute to the development of DN. Carnosine has been shown to prevent the development of DN but the underlying mechanism still needs to be studied in depth.

View Article and Find Full Text PDF

Detection of carcinoembryonic antigen using aggregation-induced emission luminogens empowered triple-format biosensor.

Biosens Bioelectron

December 2024

School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.

Conventional fluorescent probes with weak fluorescence signals and aggregation-caused quenching effect limits in biomarkers detection, thus requiring many labeled target molecules to combine their output to achieve higher signal-to noise. Here, we harness a "immune-sandwich" based affinity sensor with development of ultrabright aggregation-induced emission luminogens (AIEgens) microspheres as signal reporter. The fabricated sensor can simultaneously permit triple detection formats by naked eye, spectrum, and computer vision counting (termed "NeSCV sensor").

View Article and Find Full Text PDF

In this study, a linked simulation optimization (SO) model is presented for identification of groundwater contaminant sources. The SO model consists of two steps namely, simulation and optimization. The simulation step entails developing a groundwater contaminant transport model in which the advection-dispersion-reaction equation (ADRE) is solved for predicting the concentration of the contaminant.

View Article and Find Full Text PDF

Virus-Receptor Interactions and Receptor-Mediated Virus Entry into Host Cells.

Subcell Biochem

December 2024

Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.

The virus particles described in the previous chapters of this book are vehicles that transmit the viral genome and the infection from cell to cell. To initiate the infective cycle, the viral genome must therefore translocate from the viral particle to the cell cytoplasm. Via distinct proteins or motifs in their outermost shell, the particles of animal viruses or bacteriophages attach initially to specific receptors on the host cell surface.

View Article and Find Full Text PDF

X-Ray Crystallography of Viruses.

Subcell Biochem

December 2024

ALBA Synchrotron Light Source, Cerdanyola del Vallès, Spain.

Since the 1970s and for about 40 years, X-ray crystallography has been by far the most powerful approach for determining virus structures at close to atomic resolutions. Information provided by these studies has deeply and extensively enriched and shaped our vision of the virus world. In turn, the ever-increasing complexity and size of the virus structures being investigated have constituted a major driving force for methodological and conceptual developments in X-ray macromolecular crystallography (MX).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!