Purpose: To evaluate the osteoconductivity and the bonding strength of the newly developed interbody cage covered with the porous titanium sheet (porous Ti cage) to vertebral bodies in a sheep model.

Methods: Twelve sheep underwent anterior lumbar interbody fusion at L2-3 and L4-5 using either the new porous Ti cages (Group-P) or conventional Ti cages with autogenous iliac bone (Group-C). The animals were euthanized at 2 or 4 months postoperatively and subjected to radiological, biomechanical, and histological examinations.

Results: Computed tomography analyses showed that the ratio of bone contact area in Group-P was significantly increased at 4 months compared with that at 2 months (p = 0.01). Although the ratio of bone contact area in Group-C was significantly higher than Group-P at 2 months (p < 0.001), there was no statistically significant difference between the two groups at 4 months. Biomechanical test showed that there was no significant difference in bonding strength between the two groups at either 2 or 4 months. Histological analyses revealed that the bone apposition ratio increased significantly with time in Group-P (p < 0.001). Although Group-C showed significantly higher bone apposition ratio than Group-P at 2 months (p = 0.001), there was no statistical difference between the two groups at 4 months.

Conclusions: There was bone ingrowth into the porous Ti sheet, and bonding capacity of the porous Ti cage to the host bone increased with time. However, the speed of union to the bone with a porous Ti cage was marginally lower than a conventional cage along with an autogenous bone graft. Although it needs further experiment with a larger sample size, the results of the current study suggested that this material could achieve interbody fusion without the need for bone grafts.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00586-015-4047-2DOI Listing

Publication Analysis

Top Keywords

porous cage
12
bone
10
cage covered
8
bonding strength
8
interbody fusion
8
ratio bone
8
bone contact
8
contact area
8
group-c higher
8
group-p months
8

Similar Publications

Frustrated Lewis pair chemistry (FLP) occupy a crucial position in nonmetal-mediated catalysis, especially toward activation of inert gas molecules. Yet, one formidable issue of homogeneous FLP catalysts is their instability on preservation and recycling. Here we contribute a general solution that marries the polyhedral oligomeric silsesquioxane (POSS) with a structurally specific frustrated Lewis acid to fabricate porous polymer networks, which can form water-insensitive heterogeneous FLP catalysts upon employing Lewis base substrates.

View Article and Find Full Text PDF

Metal-organic cages improving microporosity in polymeric membrane for superior CO capture.

Sci Adv

January 2025

CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.

Mixed matrix membranes, with well-designed pore structure inside the polymeric matrix via the incorporation of inorganic components, offer a promising solution for addressing CO emissions. Here, we synthesized a series of novel metal organic cages (MOCs) with aperture pore size precisely positioned between CO and N or CH. These MOCs were uniformly dispersed in the polymers of intrinsic microporosity (PIM-1).

View Article and Find Full Text PDF

Anion-π Interactions on Functionalized Porous Aromatic Cages for Gold Recovery from Complex Aqueous with High Capacity.

Angew Chem Int Ed Engl

January 2025

Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Chemistry, Renmin Street, 130024, Changchun, CHINA.

High capacity, selective recovery and separation of precious metals from complex aqueous solutions is essential but remains a challenge in practical applications. Here, we prepared a thiophene-modified aromatic porous organic cage (T-PAC) with high stability for precise recognition and recovery of gold. T-PAC exhibits an outstanding gold uptake capacity of up to 2260 mg/g with fast adsorption kinetics and high adsorption selectivity.

View Article and Find Full Text PDF

Integrating two or more materials to construct membranes with heterogeneous pore structures is an effective strategy for enhancing separation performance. Regularly arranging these heterogeneous pores can significantly optimize the combined effect of the introduced components. Porous Organic Cages (POCs), an emerging subclass of porous materials composed of discrete molecules, assemble to form interconnected pores and exhibit permanent porosity in the solid state.

View Article and Find Full Text PDF

Expanding access to maggot containment dressings through redesign and innovation.

Int Wound J

January 2025

Applied BioSciences, Faculty of Science and Engineering, Macquarie University, North Ryde, New South Wales, Australia.

There are two major styles of maggot debridement dressings: (1) confinement dressings that form a cage around the wound, and (2) containment dressings that completely surround the maggots within a sealed porous bag. For producers and clinicians wanting to prepare containment dressings using readily available polyester bags, it is currently difficult to seal these bags without expensive high-temperature plastic welders. This study aimed to identify simple and affordable methods for sealing maggots within polyester net bags.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!