This paper introduces a new hybrid electro membrane bioreactor (HEMBR) for reverse osmosis (RO) pretreatment and advanced treatment of effluent by simultaneously integrating electrical coagulation (EC) with a membrane bioreactor (MBR) and its performance was compared with conventional MBR. Experimental results and their statistical analysis showed removal efficiency for suspended solids (SS) of almost 100% for both reactors. HEMBR removal of chemical oxygen demand (COD) improved by 4% and membrane fouling was alleviated according to transmembrane pressure (TMP). The average silt density index (SDI) of HEMBR permeate samples was slightly better indicating less RO membrane fouling. Moreover, based on the SVI comparison of two reactor biomass samples, HEMBR showed better settling characteristics which improved the dewaterability and filterability of the sludge. Analysis the change of membrane surfaces and the cake layer formed over them through field emission scanning electron microscopy (FESEM) and X-ray fluorescence spectrometer (XRF) were also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2015.05.066 | DOI Listing |
J Environ Manage
December 2024
College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China.
Submerged membrane bioreactor (SMBR) is a promising technology in municipal wastewater treatment, but the membrane fouling has restricted its development. In this study, an integrated submerged ceramic membrane bioreactor (C-SMBR) was constructed to treat domestic wastewater, and the characteristics of membrane fouling and the microbial community structure were investigated. The results showed that the average removal efficiencies of COD, TN, NH-N reached 94.
View Article and Find Full Text PDFBioresour Technol
December 2024
Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China. Electronic address:
Quorum sensing-regulated microbial behaviors often negatively impact wastewater treatment, leading to issues such as biofouling in membrane bioreactors, filamentous bulking, and resistance gene transfer. Quorum quenching, which counteracts quorum sensing, offers a promising strategy to mitigate these problems. This review aims to highlight overlooked perspectives for its application in microbial aggregates during wastewater treatment.
View Article and Find Full Text PDFiScience
December 2024
Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, P.R. China.
Membrane bioreactors (MBRs) are effective sewage treatment technologies, yet the differences in virus removal efficiency between aerobic (AeMBR) and anaerobic membrane bioreactors (AnMBR), remain inadequately understood. This study compared the virus removal efficiency of AeMBR and AnMBR, focusing on the interactions between aerobic (AeS) and anaerobic (AnS) activated sludge and viruses in the sewage treatment process. Results showed average log removal values (LRVs) for MS2 of 2.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China.
The issue of environmental pollution caused by wastewater discharge from fruit juice production has attracted increasing attention. However, the cost-effectiveness of conventional treatment technology remains insufficient. In this study, a gravity-driven membrane bioreactor (GDMBR) was developed to treat real fruit juice wastewater from secondary sedimentation at pressures ranging from 0.
View Article and Find Full Text PDFChemosphere
December 2024
School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
This study evaluated the integration of electrocoagulation into a lab-scale membrane bioreactor (EC-MBR) for treating wastewater from a detergent manufacturing plant. The EC-MBR system achieved a higher chemical oxygen demand (COD) and anionic surfactant removal efficiencies of 95.1% and 99.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!