Background/aim: Cancer stem cells (CSCs) constitute a sub-population of tumor cells that possess stem cell properties, such as self-renewal and the ability of differentiation. The presence of CSCs is associated with metastatic potential, treatment resistance and poor patient prognosis. Recently, aberrant expression of P-element induced wimpy testis proteins-PIWI (HIWI and HILI) has been identified in various types of tumors. The aim of the study was to evaluate the clinical significance of the HIWI and HILI expression and its relationship with cancer stem cells markers in 72 patients with colorectal carcinoma (CRC).
Materials And Methods: The expression level of HIWI and HILI and cancer stem cells markers in paired cancerous and non-cancerous tissues was measured by real-time reverse transcription-polymerase chain reaction (RT-PCR) assay. Immunohistochemistry was performed to confirm the observed changes on mRNA level and detect tissue localization of PIWI proteins.
Results: Significantly higher mRNA levels of HIWI and decreased HILI mRNA were measured in colorectal cancer tissues compared to corresponding non-cancerous samples. The changes in HIWI mRNA level in cancer tissues were correlated with OCT4 expression. Positive correlations between HILI level and SOX2 were also observed in cancerous tissues.
Conclusion: Our results indicate a reciprocal regulation between HIWI, HILI and some CSCs markers in colorectal cancer.
Download full-text PDF |
Source |
---|
Genet Test Mol Biomarkers
February 2023
Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea.
P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) are a type of noncoding RNA and are predominantly expressed in germline cells. piRNAs function as gene regulators and potential biomarkers for the development of a number of malignancies. The biological importance of piRNAs in ovarian cancer is still unknown.
View Article and Find Full Text PDFJ Cell Physiol
March 2020
Department of Life Science, RNAi and Functional Genomics Lab, National Institute of Technology Rourkela, Rourkela, Odisha, India.
Neuroblastoma (NB) is the leading pediatric cancer known for its heterogeneity and clinical aggressiveness leading to chemoresistance. Recent evidence in small RNA research has led to the discovery of PIWI-interacting RNAs (piRNAs) which work in an orchestrated fashion to modulate gene expression both in homeostatic conditions and abnormalities like cancer including NB. This study aims to decipher the possible role of a repeat-derived piRNA, piR-39980 (identified from our previous piRNA profiling study in human NB cell lines) in tumorigenesis of NB cells.
View Article and Find Full Text PDFMol Med Rep
March 2016
Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China.
Previous studies have demonstrated that abnormal expression levels of PIWI may serve a crucial role in tumorigenesis. However, the pathological role and its association with prognosis remains to be fully elucidated. In the present study, the expression levels of piwi‑like RNA‑mediated gene silencing 1 (HIWI) and piwi‑like RNA‑mediated gene silencing 2 (HILI) in breast cancer tissues were reported to be high.
View Article and Find Full Text PDFAnticancer Res
June 2015
Regional Specialist Hospital in Wroclaw, Research and Development Centre, Wroclaw, Poland.
Background/aim: Cancer stem cells (CSCs) constitute a sub-population of tumor cells that possess stem cell properties, such as self-renewal and the ability of differentiation. The presence of CSCs is associated with metastatic potential, treatment resistance and poor patient prognosis. Recently, aberrant expression of P-element induced wimpy testis proteins-PIWI (HIWI and HILI) has been identified in various types of tumors.
View Article and Find Full Text PDFNucleic Acids Res
August 2014
Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst, NSW, 2010, Australia Faculty of Medicine, University of New South Wales, Kensington, 2052, Australia
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!