AtUGT76C2, an Arabidopsis cytokinin glycosyltransferase is involved in drought stress adaptation.

Plant Sci

The Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Science, Shandong University, Jinan, Shandong 250100, PR China. Electronic address:

Published: July 2015

The Arabidopsis uridine diphosphate (UDP)-glycosyltransferase 76C2 (UGT76C2), a member of family 1 UGTs, is described as a cytokinin glycosyltransferase. In this study, we demonstrate a novel role of UGT76C2 in response to water deficit. QRT-PCR assay identified that the expression of this gene was downregulated by drought, osmotic stress and abscisic acid (ABA). Compared with wild type (WT) plants, transgenic lines ectopically expressing UGT76C2 exhibited reduced tolerance to ABA and osmotic stress during postgermination growth, while enhanced adaptation to drought stress at mature stage. Consistently, the ugt76c2 mutant plants showed opposite responses to these conditions. To explore the possible mechanisms of UGT76C2 contributing to drought stress adaptation, six stress inducible genes including DREB2A, RD22, RD29B, LEA, COR47 and KIN1 were detected, which showed significant upregulation in UGT76C2 overexpression plants under drought stress. Besides, five cytokinin marker genes AHK2, AHK3, AHK4, ARR1 and ARR2 were also evaluated, which showed less induced in UGT76C2 overexpression plants in response to drought stress. Our results reveal that UGT76C2, as a cytokinin glycosyltransferase, is involved in the plant response to drought stress and might represent novel cues in abiotic stress adaptation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2015.04.002DOI Listing

Publication Analysis

Top Keywords

drought stress
24
cytokinin glycosyltransferase
12
stress adaptation
12
stress
10
glycosyltransferase involved
8
ugt76c2
8
osmotic stress
8
ugt76c2 overexpression
8
overexpression plants
8
response drought
8

Similar Publications

Overexpression of AtbZIP69 in transgenic wheat confers tolerance to nitrogen and drought stress.

Planta

January 2025

State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.

AtbZIP69 overexpression in wheat significantly enhanced drought and low nitrogen tolerance by modulating ABA synthesis, antioxidant activity, nitrogen allocation, and transporter gene expression, boosting yield. In this study, we generated wheat plants with improved low nitrogen (LN) and drought tolerance by introducing AtbZIP69, a gene encoding a basic leucine zipper domain transcription factor, into the wheat cultivar Shi 4056. AtbZIP69 localized to the nucleus and activated transcription.

View Article and Find Full Text PDF

Drought is one of the main environmental factors affecting plant survival and growth. Atraphaxis bracteata is a common desert plant mainly utilized in afforestation and desertification control. This study analyzed the morphological, physiological and molecular regulatory characteristics of different organs of A.

View Article and Find Full Text PDF

Background: Drought stress is a major environmental constraint affecting crop yields. Plants in agricultural and natural environments have developed various mechanisms to cope with drought stress. Identifying genes associated with drought stress tolerance in potato and elucidating their regulatory mechanisms is crucial for the breeding of new potato germplasms.

View Article and Find Full Text PDF

Forests face an escalating threat from the increasing frequency of extreme drought events driven by climate change. To address this challenge, it is crucial to understand how widely distributed species of economic or ecological importance may respond to drought stress. In this study, we examined the transcriptome of white spruce (Picea glauca (Moench) Voss) to identify key genes and metabolic pathways involved in the species' response to water stress.

View Article and Find Full Text PDF

Acylation represents a pivotal biochemical process that is instrumental in the modification of secondary metabolites throughout the growth and developmental stages of plants. The BAHD acyltransferase family within the plant kingdom predominantly utilizes coenzyme A thioester as the acyl donor, while employing alcohol or amine compounds as the acceptor substrates to facilitate acylation reactions. Using bioinformatics approaches, the gene family members in the genome of () were identified and characterized including gene structure, conserved motifs, -acting elements, and potential gene functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!