A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Defining Action Levels for In Vivo Dosimetry in Intraoperative Electron Radiotherapy. | LitMetric

In vivo dosimetry is recommended in intraoperative electron radiotherapy (IOERT). To perform real-time treatment monitoring, action levels (ALs) have to be calculated. Empirical approaches based on observation of samples have been reported previously, however, our aim is to present a predictive model for calculating ALs and to verify their validity with our experimental data. We considered the range of absorbed doses delivered to our detector by means of the percentage depth dose for the electron beams used. Then, we calculated the absorbed dose histograms and convoluted them with detector responses to obtain probability density functions in order to find ALs as certain probability levels. Our in vivo dosimeters were reinforced TN-502RDM-H mobile metal-oxide-semiconductor field-effect transistors (MOSFETs). Our experimental data came from 30 measurements carried out in patients undergoing IOERT for rectal, breast, sarcoma, and pancreas cancers, among others. The prescribed dose to the tumor bed was 90%, and the maximum absorbed dose was 100%. The theoretical mean absorbed dose was 90.3% and the measured mean was 93.9%. Associated confidence intervals at P = .05 were 89.2% and 91.4% and 91.6% and 96.4%, respectively. With regard to individual comparisons between the model and the experiment, 37% of MOSFET measurements lay outside particular ranges defined by the derived ALs. Calculated confidence intervals at P = .05 ranged from 8.6% to 14.7%. The model can describe global results successfully but cannot match all the experimental data reported. In terms of accuracy, this suggests an eventual underestimation of tumor bed bleeding or detector alignment. In terms of precision, it will be necessary to reduce positioning uncertainties for a wide set of location and treatment postures, and more precise detectors will be required. Planning and imaging tools currently under development will play a fundamental role.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1533034615588196DOI Listing

Publication Analysis

Top Keywords

experimental data
12
absorbed dose
12
action levels
8
levels vivo
8
vivo dosimetry
8
intraoperative electron
8
electron radiotherapy
8
als calculated
8
tumor bed
8
confidence intervals
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!