Given that there is increasing recognition of the effect that sub-millimetre changes in collimator position can have on radiotherapy beam dosimetry, this study aimed to evaluate the potential variability in small field collimation that may exist between otherwise matched linacs. Field sizes and field output factors were measured using radiochromic film and an electron diode, for jaw- and MLC-collimated fields produced by eight dosimetrically matched Varian iX linacs (Varian Medical Systems, Palo Alto, USA). This study used nominal sizes from 0.6 × 0.6 to 10 × 10 cm(2), for jaw-collimated fields, and from 1 × 1 to 10 × 10 cm(2) for MLC-collimated fields, delivered from a zero (head up, beam directed vertically downward) gantry angle. Differences between the field sizes measured for the eight linacs exceeded the uncertainty of the film measurements and the repositioning uncertainty of the jaws and MLCs on one linac. The dimensions of fields defined by MLC leaves were more consistent between linacs, while also differing more from their nominal values than fields defined by orthogonal jaws. The field output factors measured for the different linacs generally increased with increasing measured field size for the nominal 0.6 × 0.6 to 1 × 1 cm(2) fields, and became consistent between linacs for nominal field sizes of 2 × 2 cm(2) and larger. The inclusion in radiotherapy treatment planning system beam data of small field output factors acquired in fields collimated by jaws (rather than the more-reproducible MLCs), associated with either the nominal or the measured field sizes, should be viewed with caution. The size and reproducibility of the fields (especially the small fields) used to acquire treatment planning data should be investigated thoroughly as part of the linac or planning system commissioning process. Further investigation of these issues, using different linac models, collimation systems and beam orientations, is recommended.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13246-015-0349-2 | DOI Listing |
Abdom Radiol (NY)
January 2025
Kerman University of Medical Sciences, Kerman, Islamic Republic of Iran.
Background And Aim: Prior investigations of the natural history of abdominal aortic aneurysms (AAAs) have been constrained by small sample sizes or uneven assessments of aggregated data. Natural language processing (NLP) can significantly enhance the investigation and treatment of patients with AAAs by swiftly and effectively collecting imaging data from health records. This meta-analysis aimed to evaluate the efficacy of NLP techniques in reliably identifying the existence or absence of AAAs and measuring the maximal abdominal aortic diameter in extensive datasets of radiology study reports.
View Article and Find Full Text PDFJMIR Mhealth Uhealth
January 2025
Institute for AI and Informatics in Medicine, Technical University of Munich, Munich, Germany.
Background: Artificial intelligence (AI) has already revolutionized the analysis of image, text, and tabular data, bringing significant advances across many medical sectors. Now, by combining with wearable inertial measurement units (IMUs), AI could transform health care again by opening new opportunities in patient care and medical research.
Objective: This systematic review aims to evaluate the integration of AI models with wearable IMUs in health care, identifying current applications, challenges, and future opportunities.
J Contin Educ Nurs
February 2025
Background: Mobile microlearning (MML) provides concise and engaging educational activities that correspond with various learning preferences and styles. Microlearning is defined as bite-sized instruction, with modules ranging from approximately 90 seconds to 5 minutes. To consider MML as a form of continuing professional development it is essential first to identify the learning preferences of a new generation of nurses entering the professional field of health care.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Research Institute of Aero-Engine, Beihang University, Beijing 100191, China. Electronic address:
Hypothesis: Complex emulsions usually consist of aqueous phases, like oil-in-water-in-oil (o/w/o) and water-in-oil-in-water (w/o/w), serving foundational roles in colloid science. Oil-in-oil-oil (o/o/o) emulsions offer new avenues for non-aqueous reagents but face challenges in balancing the forces between multiple organic phases.
Experiments: In this work, we generate o/o/o emulsions by integrating an AC electric field with a double cross-junction microchannel.
ACS Biomater Sci Eng
January 2025
Advanced Materials Department, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.
Characterization and formation of the biomineral aragonite structures of the Noah's Ark shell ( L.,1758) were studied from structural, morphogenetic, and biochemical points of view. Structural and morphological features were examined using X-ray diffraction, field-emission scanning electron microscopy, and atomic force microscopy, while thermal properties were determined by thermogravimetric and differential thermal analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!