The present study focuses on the comparison of two materials, compost from municipal solid waste and natural zeolite for the simultaneous removal of petroleum hydrocarbons (benzene, toluene, ethylbenzene, xylenes - BTEX) and toxic metals from groundwater. First, batch experiments were conducted to identify the optimal removal conditions. All of the kinetic experiments were fitted to the pseudo-second-order kinetic model; equilibrium was reached within approximately 8 h for the zeolite and 12 h for the compost. An increase in the adsorbent dose and the pH value as well as a decrease in the initial concentration enhanced the pollutants' removal. The removal selectivity of both materials with slight differences follows the order Cd > Zn & toluene > ethylbenzene > m- & p-xylene > o-xylene > benzene. According, to the results derived from the continuous flow experiments the maximum adsorption capacity of the compost (90%) referred to Cd (0.88 mmol/g) whereas the minimum refers to benzene (65%) with a capacity up to 0.065 mmol/g. Zeolite had lower efficiencies for the studied pollutants with a higher performance corresponding to Cd (0.26 mmol/g), whereas the minimum zeolite capacity (63%) corresponds to toluene (0.045 mmol/g). Thus, this paper provides evidence that compost, a low cost material produced from waste, is capable for the simultaneous removal of both organic and inorganic pollutants from wastewater, and its performance is superior to zeolite.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2015.04.043 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!