A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Analysis of Eisenia fetida earthworm responses to sub-lethal C60 nanoparticle exposure using (1)H-NMR based metabolomics. | LitMetric

Analysis of Eisenia fetida earthworm responses to sub-lethal C60 nanoparticle exposure using (1)H-NMR based metabolomics.

Ecotoxicol Environ Saf

Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4. Electronic address:

Published: October 2015

The enhanced production and environmental release of Buckminsterfullerene (C60) nanoparticles will likely increase the exposure and risk to soil dwelling organisms. We used (1)H NMR-based metabolomics to investigate the response of Eisenia fetida earthworms to sub-lethal C60 nanoparticle exposure in both contact and soil tests. Principal component analysis of (1)H NMR data showed clear separation between controls and exposed earthworms after just 2 days of exposure, however as exposure time increased the separation decreased in soil but increased in contact tests suggesting potential adaptation during soil exposure. The amino acids leucine, valine, isoleucine and phenylalanine, the nucleoside inosine, and the sugars glucose and maltose emerged as potential bioindicators of exposure to C60 nanoparticles. The significant responses observed in earthworms using NMR-based metabolomics after exposure to very low concentrations of C60 nanoparticles suggests the need for further investigations to better understand and predict their sub-lethal toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2015.05.020DOI Listing

Publication Analysis

Top Keywords

c60 nanoparticles
12
eisenia fetida
8
sub-lethal c60
8
c60 nanoparticle
8
exposure
8
nanoparticle exposure
8
nmr-based metabolomics
8
c60
5
analysis eisenia
4
fetida earthworm
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!