A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Infrared Spectrum and UV-Induced Photochemistry of Matrix-Isolated 5-Hydroxyquinoline. | LitMetric

Infrared Spectrum and UV-Induced Photochemistry of Matrix-Isolated 5-Hydroxyquinoline.

J Phys Chem A

†CQC, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.

Published: June 2015

The structure, infrared spectrum, and photochemistry of 5-hydroxyquinoline (5HQ) were studied by matrix isolation infrared spectroscopy, complemented by theoretical calculations performed at the DFT(B3LYP)/6-311++G(d,p) level of approximation. According to the calculations, the trans conformer of 5HQ (with the OH group pointing to the opposite direction of the pyridine ring of the molecule) is more stable than the cis form (by ∼8.8 kJ mol(-1)). The main factors determining the relative stability of the two conformers were rationalized through natural bond orbital (NBO) and charge density analyses. The compound was trapped in solid nitrogen at 10 K, and its infrared spectra registered and interpreted, showing the sole presence in the matrix of the more stable trans conformer. Broadband in situ UV irradiations (λ ≥ 288 nm and λ ≥ 235 nm) allowed for the observation of different chemical transformations, which started by excitation to the S1 state of 5HQ, followed by homolytic cleavage of the O-H bond, and subsequent reattachment of the H atom to the 5HQ radical to form quinolin-5(6H)-one and quinolin-5(8H)-one. The first of these two quinolinones was found to convert to open-ring isomeric ketenes, especially when irradiation was performed at higher energy, whereas the second is rather stable under the used experimental conditions. As a whole, the observed photochemistry of matrix-isolated 5HQ closely matches those previously reported for phenol and thiophenol. A detailed mechanistic interpretation for the observed photochemical processes is here proposed, which received support from time-dependent DFT calculations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.5b03942DOI Listing

Publication Analysis

Top Keywords

infrared spectrum
8
photochemistry matrix-isolated
8
trans conformer
8
5hq
5
infrared
4
spectrum uv-induced
4
uv-induced photochemistry
4
matrix-isolated 5-hydroxyquinoline
4
5-hydroxyquinoline structure
4
structure infrared
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!