Complex I (CI) deficiency is the most common respiratory chain defect representing more than 30% of mitochondrial diseases. CI is an L-shaped multi-subunit complex with a peripheral arm protruding into the mitochondrial matrix and a membrane arm. CI sequentially assembled into main assembly intermediates: the P (pumping), Q (Quinone) and N (NADH dehydrogenase) modules. In this study, we analyzed 11 fibroblast cell lines derived from patients with inherited CI deficiency resulting from mutations in the nuclear or mitochondrial DNA and impacting these different modules. In patient cells carrying a mutation located in the matrix arm of CI, blue native-polyacrylamide gel electrophoresis (BN-PAGE) revealed a significant reduction of fully assembled CI enzyme and an accumulation of intermediates of the N module. In these cell lines with an assembly defect, NADH dehydrogenase activity was partly functional, even though CI was not fully assembled. We further demonstrated that this functional N module was responsible for ROS production through the reduced flavin mononucleotide. Due to the assembly defect, the FMN site was not re-oxidized leading to a significant oxidative stress in cell lines with an assembly defect. These findings not only highlight the relationship between CI assembly and oxidative stress, but also show the suitability of BN-PAGE analysis in evaluating the consequences of CI dysfunction. Moreover, these data suggest that the use of antioxidants may be particularly relevant for patients displaying a CI assembly defect.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biocel.2015.05.017DOI Listing

Publication Analysis

Top Keywords

assembly defect
16
oxidative stress
12
cell lines
12
complex deficiency
8
nadh dehydrogenase
8
fully assembled
8
lines assembly
8
assembly
7
defect
5
assembly defects
4

Similar Publications

Article Synopsis
  • Primary ciliary dyskinesia (PCD) is a rare genetic disorder linked to chronic respiratory issues, infertility, and problems with body asymmetry, primarily caused by mutations in the CCDC39 and CCDC40 genes.
  • Researchers used advanced techniques to investigate how these genetic variants impact cellular functions beyond just causing cilia to stop moving.
  • They discovered that the absence of CCDC39/CCDC40 creates a significant loss of over 90 ciliary structural proteins, leading to cilia dysfunction and other cellular issues, suggesting that gene therapy could potentially offer a new treatment strategy for PCD.
View Article and Find Full Text PDF

Background: Aim of the present paper is to report the preliminary results of CAD-CAM (Computer-Aided Design - Computer-Aided Manufacturing) technology application to distal femur nonunion treatment with free fibula flap, custom made medial plating and maintenance of a stable lateral locking plate.

Methods: Two cases of distal femur nonunion that occurred after lateral locking plating were treated and prospectively followed-up. Surgical planning followed the same preoperative protocol adopted for mandibular CAD-CAM reconstruction.

View Article and Find Full Text PDF

We present a model to describe the concentration-dependent growth of protein filaments. Our model contains two states, a low entropy/high affinity ordered state and a high entropy/low affinity disordered state. Consistent with experiments, our model shows a diffusion-limited linear growth regime at low concentration, followed by a concentration-independent plateau at intermediate concentrations, and rapid disordered precipitation at the highest concentrations.

View Article and Find Full Text PDF

The sarcin-ricin loop (SRL) is one of the most conserved segments of ribosomal RNA (rRNA). Translational GTPases (trGTPases), such as EF-G and EF-Tu and IF2, form contacts with the SRL that are critical for GTP hydrolysis and factor function. Previous studies showed that expression of 23S rRNA lacking the SRL confers a dominant lethal phenotype in E.

View Article and Find Full Text PDF

Peptide-Perovskite Based Bio-Inspired Materials for Optoelectronics Applications.

Adv Sci (Weinh)

January 2025

BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain.

The growing demand for environmentally friendly semiconductors that can be tailored and developed easily is compelling researchers and technologists to design inherently bio-compatible, self-assembling nanostructures with tunable semiconducting characteristics. Peptide-based bioinspired materials exhibit a variety of supramolecular morphologies and have the potential to function as organic semiconductors. Such biologically or naturally derived peptides with intrinsic semiconducting characteristics create new opportunities for sustainable biomolecule-based optoelectronics devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!