Glucose transporters: cellular links to hyperglycemia in insulin resistance and diabetes.

Nutr Rev

D.M. Stringer was with the Department of Human Nutritional Sciences, University of Manitoba, and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada at the time of manuscript preparation. C.G. Taylor is with the Department of Human Nutritional Sciences, University of Manitoba; the Department of Physiology, University of Manitoba; and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada. P. Zahradka is with the Department of Human Nutritional Sciences, University of Manitoba; the Department of Physiology, University of Manitoba; and the Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada.

Published: March 2015

Abnormal expression and/or function of mammalian hexose transporters contribute to the hallmark hyperglycemia of diabetes. Due to different roles in glucose handling, various organ systems possess specific transporters that may be affected during the diabetic state. Diabetes has been associated with higher rates of intestinal glucose transport, paralleled by increased expression of both active and facilitative transporters and a shift in the location of transporters within the enterocyte, events that occur independent of intestinal hyperplasia and hyperglycemia. Peripheral tissues also exhibit deregulated glucose transport in the diabetic state, most notably defective translocation of transporters to the plasma membrane and reduced capacity to clear glucose from the bloodstream. Expression of renal active and facilitative glucose transporters increases as a result of diabetes, leading to elevated rates of glucose reabsorption. However, this may be a natural response designed to combat elevated blood glucose concentrations and not necessarily a direct effect of insulin deficiency. Functional foods and nutraceuticals, by modulation of glucose transporter activity, represent a potential dietary tool to aid in the management of hyperglycemia and diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.1093/nutrit/nuu012DOI Listing

Publication Analysis

Top Keywords

glucose
9
glucose transporters
8
hyperglycemia diabetes
8
diabetic state
8
glucose transport
8
active facilitative
8
transporters
6
diabetes
5
transporters cellular
4
cellular links
4

Similar Publications

Background: Enhancing self-management in health care through digital tools is a promising strategy to empower patients with type 2 diabetes (T2D) to improve self-care.

Objective: This study evaluates whether the Greenhabit (mobile health [mHealth]) behavioral treatment enhances T2D outcomes compared with standard care.

Methods: A 12-week, parallel, single-blind randomized controlled trial was conducted with 123 participants (62/123, 50%, female; mean age 58.

View Article and Find Full Text PDF

South Asia has high prevalence rates of type 2 diabetes (T2D). Until the 1990s, the prevalence of T2D within South Asia was low but much higher in the South Asian diaspora living abroad. Today, high prevalence rates of T2D are reported among those living in South Asia.

View Article and Find Full Text PDF

Leptosperin (methyl syringate-4--β-d-gentiobioside) serves as a unique marker for ma̅nuka honey, derived from the ma̅nuka plant (). Despite its importance, the biosynthesis pathway of leptosperin remains unreported. This study investigates the molecular mechanism of leptosperin formation from its aglycone, methyl syringate (MSYR), in ma̅nuka plants.

View Article and Find Full Text PDF

Aim: To evaluate the clinical effectiveness of ozonated sunflower oil (Oz) as an adjunctive of non-surgical periodontal therapy in patients with type 2 diabetes mellitus (DM2), on fibroblast cell viability and migration and the effectiveness of Oz on a Candida albicans (C. albicans) culture.

Methodology: In total, 32 sites in 16 DM2 with moderate to advanced periodontal disease with periodontal pocket depths ≥5mm were selected.

View Article and Find Full Text PDF

Sodium-glucose co-transporter 2 inhibitors, such as enavogliflozin, offer promising metabolic benefits for patients with type 2 diabetes (T2D), including glycemic control and improved cardiac function. Despite the clinical evidence, real-world evidence is needed to validate their safety and effectiveness. This study aims to evaluate the effects of weight loss and safety of enavogliflozin administration in patients with T2D in a real-world clinical setting over 24 weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!