A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Increasing live birth rate by preimplantation genetic screening of pooled polar bodies using array comparative genomic hybridization. | LitMetric

Meiotic errors during oocyte maturation are considered the major contributors to embryonic aneuploidy and failures in human IVF treatment. Various technologies have been developed to screen polar bodies, blastomeres and trophectoderm cells for chromosomal aberrations. Array-CGH analysis using bacterial artificial chromosome (BAC) arrays is widely applied for preimplantation genetic diagnosis (PGD) using single cells. Recently, an increase in the pregnancy rate has been demonstrated using array-CGH to evaluate trophectoderm cells. However, in some countries, the analysis of embryonic cells is restricted by law. Therefore, we used BAC array-CGH to assess the impact of polar body analysis on the live birth rate. A disadvantage of polar body aneuploidy screening is the necessity of the analysis of both the first and second polar bodies, resulting in increases in costs for the patient and complex data interpretation. Aneuploidy screening results may sometimes be ambiguous if the first and second polar bodies show reciprocal chromosomal aberrations. To overcome this disadvantage, we tested a strategy involving the pooling of DNA from both polar bodies before DNA amplification. We retrospectively studied 351 patients, of whom 111 underwent polar body array-CGH before embryo transfer. In the group receiving pooled polar body array-CGH (aCGH) analysis, 110 embryos were transferred, and 29 babies were born, corresponding to live birth rates of 26.4% per embryo and 35.7% per patient. In contrast, in the control group, the IVF treatment was performed without preimplantation genetic screening (PGS). For this group, 403 embryos were transferred, and 60 babies were born, resulting in live birth rates of 14.9% per embryo and 22.7% per patient. In conclusion, our data show that in the aCGH group, the use of aneuploidy screening resulted in a significantly higher live birth rate compared with the control group, supporting the benefit of PGS for IVF couples in addition to the suitability and effectiveness of our polar body pooling strategy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4449032PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0128317PLOS

Publication Analysis

Top Keywords

live birth
20
polar bodies
20
polar body
20
birth rate
12
preimplantation genetic
12
aneuploidy screening
12
polar
10
genetic screening
8
pooled polar
8
ivf treatment
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!