We report a magnetofluidic device with integrated strong ferromagnetically-coupled and hysteresis-free spin valve sensors for dynamic monitoring of ferrofluid droplets in microfluidics. The strong ferromagnetic coupling between the free layer and the pinned layer of spin valve sensors is achieved by reducing the spacer thickness, while the hysteresis of the free layer is eliminated by the interplay between shape anisotropy and the strength of coupling. The increased ferromagnetic coupling field up to the remarkable 70 Oe, which is five-times larger than conventional solutions, brings key advantages for dynamic sensing, e.g., a larger biasing field giving rise to larger detection signals, facilitating the operation of devices without saturation of the sensors. Studies on the fundamental effects of an external magnetic field on the evolution of the shape of droplets, as enabled by the non-visual monitoring capability of the device, provides crucial information for future development of a magnetofluidic device for multiplexed assays.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4507669PMC
http://dx.doi.org/10.3390/s150612526DOI Listing

Publication Analysis

Top Keywords

spin valve
12
strong ferromagnetically-coupled
8
magnetofluidic device
8
valve sensors
8
ferromagnetic coupling
8
free layer
8
ferromagnetically-coupled spin
4
valve sensor
4
sensor devices
4
devices droplet
4

Similar Publications

Employing density functional theory for ground state quantum mechanical calculations and the non-equilibrium Green's function method for transport calculations, we investigate the potential of CdS, ZnS, CdZnS, and ZnCdS as tunnel barriers in magnetic tunnel junctions for spintronics. Based on the finding that the valence band edges of these semiconductors are dominated by p orbitals and the conduction band edges by s orbitals, we show that symmetry filtering of the Bloch states in magnetic tunnel junctions with Fe electrodes results in high tunneling magnetoresistances and high spin-polarized current (up to two orders of magnitude higher than in the case of the Fe/MgO/Fe magnetic tunnel junction).

View Article and Find Full Text PDF

Two-Dimensional Nonvolatile Valley Spin Valve.

ACS Nano

January 2025

Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0299, United States.

A spin valve represents a well-established device concept in magnetic memory technologies, whose functionality is determined by electron transmission, controlled by the relative alignment of magnetic moments of the two ferromagnetic layers. Recently, the advent of valleytronics has conceptualized a valley spin valve (VSV)─a device that utilizes the valley degree of freedom and spin-valley locking to achieve a similar valve effect without relying on magnetism. In this study, we propose a nonvolatile VSV (-VSV) based on a two-dimensional (2D) ferroelectric semiconductor where resistance of -VSV is controlled by a ferroelectric domain wall between two uniformly polarized domains.

View Article and Find Full Text PDF

Non-volatile electronic memory elements are very attractive for applications, not only for information storage but also in logic circuits, sensing devices and neuromorphic computing. Here, a ferroelectric film of guanine nucleobase is used in a resistive memory junction sandwiched between two different ferromagnetic films of Co and CoCr alloys. The magnetic films have an in-plane easy axis of magnetization and different coercive fields whereas the guanine film ensures a very long spin transport length, at 100 K.

View Article and Find Full Text PDF

Magnetic phase transition and spin-phonon coupling effect of antiferromagnetic NiO flakes probed by Raman spectroscopy.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China. Electronic address:

Two-dimensional antiferromagnetic materials have attracted wide attention in both performance and application, which are of great significance for spin valves and next-generation magnetic random access memory devices. The spin-phonon coupling effect plays a crucial role in magnon dynamics. However, there is still a lack of research on the spin-phonon coupling effect of two-dimensional antiferromagnetic flakes.

View Article and Find Full Text PDF

Organic semiconductors, characterized by their exceptionally long spin relaxation times (≈ms) and unique spinterface effects, are considered game-changers in spintronics. However, achieving high-performance and wide-range tunable magnetoresistance (MR) in organic spintronic devices remains challenging, severely limiting the development of organic spintronics. This work combines straintronic multiferroic heterostructures with organic spin valve (OSV) to develop a three-terminal OSV device with a gate structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!