We demonstrate that a microfabricated bump array can concentrate genomic-length DNA molecules efficiently at continuous, high flow velocities, up to 40 μm/s, if the single-molecule DNA globule has a sufficiently large shear modulus. Increase in the shear modulus is accomplished by compacting the DNA molecules to minimal coil size using polyethylene glycol (PEG) derived depletion forces. We map out the sweet spot, where concentration occurs, as a function of PEG concentration and flow speed using a combination of theoretical analysis and experiment. Purification of DNA from enzymatic reactions for next-generation DNA-sequencing libraries will be an important application of this development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.114.198303 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.
The use of proteins as intracellular probes and therapeutic tools is often limited by poor intracellular delivery. One approach to enabling intracellular protein delivery is to transform proteins into spherical nucleic acid (proSNA) nanoconstructs, with surfaces chemically modified with a dense shell of radially oriented DNA that can engage with cell-surface receptors that facilitate endocytosis. However, proteins often have a limited number of available reactive surface residues for DNA conjugation such that the extent of DNA loading and cellular uptake is restricted.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States.
Direct translocation of RNA with secondary structures using single-molecule electrophoresis through protein nanopores shows significant fluctuations in the measured ionic current, in contrast to unstructured single-stranded RNA or DNA. We developed a multiscale model combining the oxRNA model for RNA with the 3-dimensional Poisson-Nernst-Planck formalism for electric fields within protein pores, aiming to map RNA conformations to ionic currents as RNA translocates through three protein nanopores: α-hemolysin, CsgG, and MspA. Our findings reveal three distinct stages of translocation (pseudoknot, melting, and molten globule) based on contact maps and current values.
View Article and Find Full Text PDFCurr Rheumatol Rev
January 2025
Department of Rheumatology, Beijing Jishuitan Hospital, Guizhou Hospital, China.
Gouty arthritis is a common arthritic disease caused by the deposition of monosodium urate crystals in the joints and the tissues around it. The main pathogenesis of gout is the inflammation caused by the deposition of monosodium urate crystals. Omics studies help us evaluate global changes in gout during recent years, but most studies used only a single omics approach to illustrate the mechanisms of gout.
View Article and Find Full Text PDFEndocr Metab Immune Disord Drug Targets
January 2025
Department of Laboratory Medicine, Taizhou First People's Hospital, Huangyan Hospital of Wenzhou Medical University, Taizhou, Zhejiang, China.
Aim: The aim of this study is to examine the role of the microrchidia (MORC) family, a group of chromatin remodeling proteins, as the therapeutic and prognostic markers for colorectal cancer (CRC).
Background: MORC protein family genes are a highly conserved nucleoprotein superfamily whose members share a common domain but have distinct biological functions. Previous studies have analyzed the roles of MORCs as epigenetic regulators and chromatin remodulators; however, the involvement of MORCs in the development and pathogenesis of CRC was less examined.
J Pathol
January 2025
Laboratory of Pathology, Center for Cancer Research, NCI, Bethesda, MD, USA.
Rhabdomyosarcoma (RMS) is a family of phenotypically myogenic paediatric cancers consisting of two major subtypes: fusion-positive (FP) RMS, most commonly involving the PAX3::FOXO1 fusion gene, formed by the fusion of paired box 3 (PAX3) and forkhead box O1 (FOXO1) genes, and fusion-negative (FN) RMS, lacking these gene fusions. In humans, DNA methylation patterns distinguish these two subtypes as well as mutation-associated subsets within these subtypes. To investigate the biological factors responsible for these methylation differences, we profiled DNA methylation in RMS tumours derived from genetically engineered mouse models (GEMMs) in which various driver mutations were introduced into different myogenic lineages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!