A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Advanced glycation end-product accumulation reduces vitreous permeability. | LitMetric

Purpose: To evaluate the effect of nonenzymatic cross-linking (glycation) upon the permeability of the vitreous to small- and large-solute diffusion.

Methods: Vitreous from freshly excised porcine eyes was treated for 30 minutes with control or 0.01%, 0.1%, or 1% methylglyoxal (MG) solution. The efficacy of the glycation regimen was verified by measuring nonenzymatic cross-link density by fluorescence in the vitreous samples. Resistance to collagenase digestion as well as N(ε)-(carboxyethyl) lysine (CEL) content were also measured. The permeability coefficient for fluorescein and fluorescein isothiocyanate (FITC)-IgG diffusion through 3 mL of the vitreous samples was determined by using a custom permeability tester.

Results: Vitreous cross-linking with MG treatment was confirmed by increased fluorescence, increased CEL concentration, and increased resistance to collagenase digestion. Vitreous glycation resulted in a statistically significant decrease in the permeability coefficient for fluorescein diffusion when either 0.1% or 1% MG solution was used (5.36 ± 5.24 × 10(-5) cm s(-1), P = 0.04; and 4.03 ± 2.1 × 10(-5) cm s(-1), P = 0.001; respectively, compared with control, 9.77 ± 5.45 × 10(-5) cm s(-1)). The permeability coefficient for diffusion of FITC-IgG between control (9.9 ± 6.37 × 10(-5) cm s(-1)) and treatment groups was statistically significant at all MG concentrations (0.01% MG: 3.95 ± 3.44 × 10(-5) cm s(-1), P = 0.003; 0.1% MG: 4.27 ± 1.32 × 10(-5) cm s(-1), P = 0.004; and 0.1% MG: 3.72 ± 2.49 × 10(-5) cm s(-1), P = 0.001).

Conclusions: Advanced glycation end-product (AGE) accumulation reduces vitreous permeability when glycation is performed in ex vivo porcine vitreous. The permeability change was more pronounced for the larger solute, suggesting a lower threshold for AGE-induced permeability changes to impact the movement of proteins through the vitreous when compared with smaller molecules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4419779PMC
http://dx.doi.org/10.1167/iovs.14-15840DOI Listing

Publication Analysis

Top Keywords

10-5 s-1
28
vitreous permeability
12
permeability coefficient
12
vitreous
10
permeability
9
advanced glycation
8
glycation end-product
8
accumulation reduces
8
reduces vitreous
8
vitreous samples
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!