Enantioselective total synthesis of (+)-lyngbyabellin M.

Mar Drugs

Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, CEP 13083-970 Campinas, São Paulo, Brazil.

Published: May 2015

Lyngbyabellin M is a non-ribosomal peptide synthetase/polyketide synthase derived metabolite isolated from the cyanobacterium M. bouillonii displaying thiazole rings and a distinct chlorinated octanoic acid chain. Its absolute configuration was proposed based on the comparison of its spectroscopic data with those of other representatives of this family of marine natural products, as well as degradation and derivatization studies. Here the first total synthesis of (+)-lyngbyabellin M is described based on the coupling of three key intermediates: two chiral thiazole moieties and an anti hydroxycarboxylic acid prepared stereoselectively via a boron enolate mediated aldol reaction directed by Masamune's chiral auxiliary.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4483630PMC
http://dx.doi.org/10.3390/md13063309DOI Listing

Publication Analysis

Top Keywords

total synthesis
8
synthesis +-lyngbyabellin
8
enantioselective total
4
+-lyngbyabellin lyngbyabellin
4
lyngbyabellin non-ribosomal
4
non-ribosomal peptide
4
peptide synthetase/polyketide
4
synthetase/polyketide synthase
4
synthase derived
4
derived metabolite
4

Similar Publications

Electroacupuncture treatment for sarcopenia: study protocol for a randomized controlled trial.

BMC Complement Med Ther

December 2024

Division of internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

Introduction: Sarcopenia is a disease primarily characterized by age-related loss of skeletal muscle mass, muscle strength, and/or decline in physical performance. Sarcopenia has an insidious onset which can cause functional impairment in the body and increase the risk of falls and disability in the elderly. It significantly increases the likelihood of fractures and mortality, severely impairing the quality of life and health of the elderly people.

View Article and Find Full Text PDF

The ruthenium compounds have been known to have the wide range of potential applications as anticancer, antibacterial and anti-diabetic etc. The ligand substitutions play a vital role in enhancing the pharmacological and biological activities. In the present study, three ruthenium-metal based complexes, designated as (I-III), were synthesized and characterized employing element analysis, FTIR and HNMR.

View Article and Find Full Text PDF

Objective: Hyponatremia after aneurysmal subarachnoid hemorrhage (aSAH) is common, however the incidence, and association with vasospasm, morbidity, and mortality, has yet to be defined. We aimed to identify incidence of hyponatremia after aSAH, and quantify its association with measurable outcomes.

Methods: A PRISMA-compliant systematic review and meta-analysis was conducted (PROSPERO ID CRD42022363472).

View Article and Find Full Text PDF

Background: Plant-based foods have reduced protein digestibility and frequently display unbalanced amino acid profiles. Plant-based foods are therefore considered inferior to animal-based foods in their anabolic potential. No study has assessed the anabolic potential of a vegan diet that provides a large variety of plant-based protein sources in older adults.

View Article and Find Full Text PDF

It has been found that severe lipid metabolism disorders are often present in patients with Psoriasis, including decreased levels of high-density lipoprotein (HDL). This study initially explored the impact of HDL level variations on psoriasis by collecting. This study collected 12 blood samples and 9 skin samples from psoriasis vulgaris and psoriasis vulgaris with reduced HDL levels and performed bulk RNA sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!