Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cyanobacteria are present in all aquatic ecosystems throughout the world. They are able to produce toxic secondary metabolites, and microcystins are those most frequently found. Research has displayed a negative influence of microcystins and closely related nodularin on fish, and various histopathological alterations have been observed in many organs of the exposed fish. The aim of this article is to summarize the present knowledge of the impact of microcystins and nodularin on the histology of fish. The observed negative effects of cyanotoxins indicate that cyanobacteria and their toxins are a relevant medical (due to irritation, acute poisoning, tumor promotion, and carcinogenesis), ecotoxicological, and economic problem that may affect both fish and fish consumers including humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10590501.2015.1003000 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!