Anti-diabetic potential of selected ethno-medicinal plants of north east India.

J Ethnopharmacol

Laboratory of Natural Medicinal Chemistry, Natural Product Chemistry & Pharmacology Programme, Institute of Bioresources & Sustainable Development, Takyelpat, Imphal 795001, Manipur, India. Electronic address:

Published: August 2015

Ethnopharmacological Relevance: Through one-to-one interaction with the traditional healers, the present study has identified 15 medicinal plant species traditionally used as remedies to control diabetes.

Materials And Methods: The methanolic extracts were screened for their α-glucosidase inhibitory activity. Hypoglycemic activity was assessed following glucose, sucrose and starch tolerance test on normal and STZ induced diabetic rats.

Results: Ficus cunia extract had the highest α-glucosidase inhibitory potency with IC50 1.39±0.74 µg mL(-1) followed by Schima wallichi (IC50 1.43±0.20 µg mL(-1)) and Wendlandia glabrata (IC50 1.67±0.33 µg mL(-1)). In STZ induced diabetic rat model, F. cunia and W glabrata extracts reduced blood glucose concentration to near normal up to 14 days when administered 48 h after STZ.

Conclusion: The present study supports the traditional use of some of these medicinal plants in anti-diabetic remedies. The present study contributes to evidence for use of traditional medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2015.05.030DOI Listing

Publication Analysis

Top Keywords

µg ml-1
12
α-glucosidase inhibitory
8
stz induced
8
induced diabetic
8
anti-diabetic potential
4
potential selected
4
selected ethno-medicinal
4
ethno-medicinal plants
4
plants north
4
north east
4

Similar Publications

Ultrasensitive determination of α-glucosidase activity using CoOOH nanozymes and its application to inhibitor screening.

J Mater Chem B

March 2023

Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology College of Material Science and Engineering, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha, 410082, China.

In this work, a novel method for the colorimetric sensing of α-glucosidase (α-Glu) activity was developed based on CoOOH nanoflakes (NFs), which exhibit efficient oxidase-mimicking activity. Colorless 3,3',5,5'-tetramethylbenzidine (TMB) can be oxidized by CoOOH NFs into blue-colored oxidized TMB (oxTMB) in the absence of HO. L-Ascorbic acid-2--α-D-glucopyranose (AAG) can be hydrolysed by α-glucosidase to produce ascorbic acid, resulting in a significant decrease of catalytic activity of CoOOH NFs.

View Article and Find Full Text PDF

A fluorometric assay for α-glucosidase activity based on quaternary AgInZnS QDs.

Mikrochim Acta

June 2021

Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.

A sensitive fluorescence strategy was constructed for the detection of α-glucosidase activity based on AgInZnS QDs. The AIZS QDs which were synthesized by hydrothermal method have a fluorescence emission wavelength of 554 nm. Ce was able to oxidize p-phenylenediamine (PPD) to generate oxPPD, which can quench the fluorescence of AIZS QDs through dynamic quenching.

View Article and Find Full Text PDF

α-Glucosidase and its inhibitors play a key role in diagnosis and treatment of diabetes. In the present work, we established a facile, sensitive and selective fluorescence method based on silicon quantum dots (SiQDs) and MnO nanosheets for the determination of α-glucosidase and one of its inhibitors acarbose. The fluorescence of SiQDs was greatly quenched by MnO nanosheets due to the inner filter effect.

View Article and Find Full Text PDF

In recent years, α-glucosidase (α-Glu) inhibitor has been widely used in clinic for diabetic and HIV therapy. Although different systems have been constructed for sensitive and selective detection of α-Glu and screening its inhibitor, the method based on ratiometric fluorescence for α-glucosidase inhibitor screening remains poorly investigated. Herein, we constructed a new MnO nanosheet (NS)-based ratiometric fluorescent sensor for α-glucosidase activity assay and its inhibitor screening.

View Article and Find Full Text PDF

Aim: α -Acid glycoprotein (AAG), which is a major binding protein of docetaxel, is considered to be a determinant for docetaxel pharmacokinetics. However, there are no reports about the impact of serum AAG on pharmacokinetics and pharmacodynamics in elderly patients treated with docetaxel. The aim of this prospective study was to elucidate the effects of advanced age and serum AAG on docetaxel unbound exposure and neutropenia, dose-limiting toxicity, in cancer patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!