AI Article Synopsis

  • There is uncertainty about the relationship between intermittent hypoxia in obstructive sleep apnea (OSA) and oxidative stress, prompting a study to examine effects of stopping CPAP treatment.
  • In a randomized trial with 59 patients, those on sham CPAP experienced moderate-to-severe OSA, yet several markers of oxidative stress did not show significant changes.
  • Interestingly, urinary F2-isoprostane levels decreased by around 30%, and superoxide dismutase levels increased, suggesting that hypoxic preconditioning may help reduce oxidative stress instead of increasing it.

Article Abstract

There is conflicting evidence whether intermittent hypoxia in obstructive sleep apnoea (OSA) influences oxidative stress. We hypothesised that withdrawal of continuous positive airway pressure (CPAP) from patients with OSA would raise markers of oxidative stress.59 patients with CPAP-treated moderate-to-severe OSA (oxygen desaturation index (ODI) >20 events·h(-1)) were randomised 1:1 to either stay on CPAP (n=30) or change to sham CPAP (n=29) for 2 weeks. Using samples from two similar studies at two sites, we measured early morning blood malondialdehyde (MDA, a primary outcome in one study and a secondary outcome in the other), lipid hydroperoxides, total antioxidant capacity, superoxide generation from mononuclear cells and urinary F2-isoprostane. We also measured superoxide dismutase as a marker of hypoxic preconditioning. "Treatment" effects (sham CPAP versus CPAP) were calculated via linear regression.Sham CPAP provoked moderate-to-severe OSA (mean ODI 46 events·h(-1)), but blood markers of oxidative stress did not change significantly (MDA "treatment" effect (95% CI) -0.02 (-0.23 to +0.19) μmol·L(-1)). Urinary F2-isoprostane fell significantly by ~30% (-0.26 (-0.42 to -0.10) ng·mL(-1)) and superoxide dismutase increased similarly (+0.17 (+0.02 to +0.30) ng·mL(-1)).We found no direct evidence of increased oxidative stress in patients experiencing a return of their moderate-to-severe OSA. The fall in urinary F2-isoprostane and rise in superoxide dismutase implies that hypoxic preconditioning may have reduced oxidative stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4579567PMC
http://dx.doi.org/10.1183/09031936.00023215DOI Listing

Publication Analysis

Top Keywords

oxidative stress
20
moderate-to-severe osa
12
urinary f2-isoprostane
12
superoxide dismutase
12
continuous positive
8
positive airway
8
airway pressure
8
markers oxidative
8
sham cpap
8
hypoxic preconditioning
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!