JNK-interacting protein 1 mediates Alzheimer's-like pathological features in AICD-transgenic mice.

Neurobiol Aging

Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, USA; Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA.

Published: August 2015

Amyloid precursor protein, which generates amyloid beta peptides, is intimately associated with Alzheimer's disease (AD) pathogenesis. We previously showed that transgenic mice overexpressing amyloid precursor protein intracellular domain (AICD), a peptide generated simultaneously with amyloid beta, develop AD-like pathologies, including hyperphosphorylated tau, loss of synapses, and memory impairments. AICD is known to bind c-Jun N-terminal kinase (JNK)-interacting protein 1 (JIP1), a scaffold protein that associates with and activates JNK. The aim of this study was to examine the role of JIP1 in AICD-induced AD-like pathologies in vivo, since the JNK pathway is aberrantly activated in AD brains and contributes to AD pathologies. We generated AICD-Tg mice lacking the JIP1 gene (AICD; JIP1(-/-)) and found that although AICD; JIP1(-/-) mice exhibit increased AICD, the absence of JIP1 results in decreased levels of hyperphosphorylated tau and activated JNK. AICD; JIP1(-/-) mice are also protected from synaptic loss and show improved performance in behavioral tests. These results suggest that JIP1 mediates AD-like pathologies in AICD-Tg mice and that JNK signaling may contribute to amyloid-independent mechanisms of AD pathogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neurobiolaging.2015.04.013DOI Listing

Publication Analysis

Top Keywords

ad-like pathologies
12
aicd jip1-/-
12
jnk-interacting protein
8
amyloid precursor
8
precursor protein
8
amyloid beta
8
hyperphosphorylated tau
8
aicd-tg mice
8
jip1-/- mice
8
mice
6

Similar Publications

Differential Expression of GABA Receptor-Related Genes in Alzheimer's Disease and the Positive Regulatory Role of Aerobic Exercise-From Genetic Screening to D-gal-induced AD-like Pathology Model.

Neuromolecular Med

December 2024

Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, 410012, China.

Alzheimer's disease (AD) is the most common neurodegenerative disorder. The neuropathology of AD appears in the hippocampus. The purpose of this work was to reveal key differentially expressed genes (DEGs) in the hippocampus of AD patients and healthy individuals.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden.

Background: Alzheimer's disease (AD) is associated with synaptic and memory dysfunction. A pathological hallmark of the disease is reactive astrogliosis, with reactive astrocytes surrounding amyloid plaques in the brain. Astrocytes have also been shown to be actively involved in disease progression, nevertheless, mechanistic information about their role in synaptic transmission during AD pathology is lacking.

View Article and Find Full Text PDF

Background: Spatial disorientation is an early symptom of Alzheimer's disease (AD). The hippocampus creates a cognitive map, wherein cells form firing fields in specific locations within an environment, termed place cells. Critically, place cells remain stable across visits to an environment, but change their firing rate or field location in a different environment.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) manifests with early spatial memory impairment and is linked to the degeneration of hippocampal circuits. Hippocampal sharp wave ripples (SWRs) are high-frequency population-burst events that coordinate the reactivation of neural assemblies (groups of neurons that become correlated in their firing patterns during learning) in post-learning sleep, which is the neural basis of memory consolidation. SWRs are reduced in the APP/PS1 mouse model of AD-like pathology.

View Article and Find Full Text PDF

Background: Rodent models have been proved pivotal in Alzheimer's disease (AD) research. Nevertheless, the use of models that only recapitulate one aspect of AD neuropathology, and of early time points that might be excluding important features such as age-dependent inflammation and senescence, could hinder the development of effective AD therapeutics. Several tau immunotherapies are currently undergoing clinical trial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!