Premise Of The Study: Rhizomes, subterranean stems that grow horizontally, are a storage organ that is highly associated with overwintering and regrowth. This quantitative study aimed to discover genetic determinants of rhizomatousness, an important trait related to perenniality and invasiveness.

Methods: A population of 161 individuals of a recombinant inbred line (RIL) derived from morphologically distinct parents, Sorghum bicolor and Sorghum propinquum, which segregates for rhizomatousness, was phenotyped and genetically mapped.

Key Results: Seven genomic regions influenced rhizomatousness in this population; four were "consensus" regions that correspond with previously detected quantitative trait loci (QTLs) in an F2 population of the same pedigree and with different levels of vegetative branching. Because rhizomatousness is a plastic trait that is greatly influenced by environment, overlap between regions discovered in the RIL and F2 populations validates the position and effect of QTLs. Correspondence with regions influencing vegetative branching indicates that some genes and biochemical pathways may influence both vegetative branching and rhizomatousness, while genes influencing only one trait may confer divergent aspects of development of these organs.

Conclusions: Identifying genes conferring rhizomatousness and understanding their functions may provide opportunities to regulate plant growth for diverse applications. Increasing rhizomatousness may promote the productivity and perenniality of many grasses, especially biomass-dedicated crops, while decreasing rhizomatousness may improve monocarpic grain production and offer means to control many noxious weeds.

Download full-text PDF

Source
http://dx.doi.org/10.3732/ajb.1500035DOI Listing

Publication Analysis

Top Keywords

vegetative branching
16
rhizomatousness
9
recombinant inbred
8
sorghum bicolor
8
branching rhizomatousness
8
genetic analysis
4
analysis rhizomatousness
4
rhizomatousness relationship
4
vegetative
4
relationship vegetative
4

Similar Publications

Multi-omics analysis reveals the regulatory mechanism of branching development in Quercus fabri.

J Proteomics

January 2025

State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China. Electronic address:

The ability of axillary meristems to form axillary buds and subsequently develop into branches is influenced by phytohormones, environmental conditions, and genetic factors. The main trunk of Quercus fabri is prone to branching, which not only impacts the appearance and density of the wood and significantly reduces the yield rate. This study conducted transcriptomic, proteomic, and metabolomic analyses on three stages of axillary bud development in Q.

View Article and Find Full Text PDF

Phenol and its chlorinated derivatives are introduced into the environment with wastewater effluents from various industries, becoming toxic pollutants. Phenol-degrading bacteria are important objects of research; among them, representatives of the genus are often highlighted as promising. Strain 7Ba was isolated by enrichment culture.

View Article and Find Full Text PDF

During the study of algal diversity in pyroclastic deposits of the Kamchatka Peninsula, Chlorella-like green algae strains VCA-72 and VCA-93 were isolated from samples collected from along the Baydarnaya river bed on the Shiveluch volcano in 2018 and at the outlet of thermal vapors along the edge of the caldera on the southern slope of the Gorely volcano in 2020. Identification of the strains was carried out within the framework of an integrative approach using microscopic and molecular genetic methods, including preliminary taxon identification, obtaining nucleotide sequences of the small subunit and the internal transcribed spacer rRNA, reconstruction of phylogenetic trees and secondary structures of the ITS1 and ITS2 rRNA regions. On the phylogenetic tree, strain VCA-93 was clustered in the Micractinium thermotolerans species clade.

View Article and Find Full Text PDF

Breeding species for resistance to disease in the Iberian Peninsula.

Front Plant Sci

December 2024

Departamento de Ciencias de la Vida, Facultad de Ciencias, Universidad de Alcalá, Madrid, Spain.

Alders are widely distributed riparian trees in Europe, North Africa and Western Asia. Recently, a strong reduction of alder stands has been detected in Europe due to infection by species (Stramenopila kingdom). This infection causes a disease known as alder dieback, characterized by leaf yellowing, dieback of branches, increased fruit production, and bark necrosis in the collar and basal part of the stem.

View Article and Find Full Text PDF

Sugar Transport and Signaling in Shoot Branching.

Int J Mol Sci

December 2024

Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France.

The source-sink relationship is critical for proper plant growth and development, particularly for vegetative axillary buds, whose activity shapes the branching pattern and ultimately the plant architecture. Once formed from axillary meristems, axillary buds remain dormant or become active to grow into new branches. This transition is notably driven by the regulation of the bud sink strength, which is reflected in the ability to unload, metabolize and store photoassimilates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!