This paper reports the first study on the mechanical behavior of lithium metasilicate glass-ceramic using nanoindentation and in situ scanning probe imaging techniques. Indentation contact hardness, Hc, and Young's modulus, E, were measured at 10 mN peak load and 0.1-2 mN/s loading rates to understand the loading rate effect on its properties. Indentation imprints were analysed with the in situ scanning probe imaging to understand indentation mechanisms. The average contact hardness increased by 112% with the loading rate (ANOVA, p<0.05) while the Young's modulus showed the loading rate independence (ANOVA, p>0.05). A strain rate sensitivity model was applied to determine the intrinsic contact hardness. Extensive discontinuities and largest maximum, contact and final depths were also observed at the lowest loading rate. These phenomena corresponded to inhomogeneous shear-band flow and densification leading to the material strain softening. The in situ scanning probe images of indentation imprints showed plastic deformation at all loading rates and shear band-induced pileups at the lowest loading rate. With the increase in loading rate, the induced pile-ups decreased. The continuum model predicted the largest densified shear zone at the lowest loading rate. Finally, these results provide scientific insights into the abrasive machining responses of lithium metasilicate glass-ceramic during dental CAD/CAM processes using sharp diamond abrasives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2015.05.002 | DOI Listing |
Dent Mater
January 2025
Department of Restorative Dentistry, University of Manitoba, Winnipeg, MB, R3E 0W2, Canada.
Objective: This study aimed to evaluate the chemical solubility (CS) and conduct a comprehensive physicochemical characterization of several experimental and commercial lithium silicate-based glass-ceramics towards an understanding of the chemical processes governing dissolution in these glass-ceramics.
Methodology: Glass-ceramic (GC) samples were categorized into two groups: experimental materials featuring lithium metasilicate crystals (GCE1 and GCE2); and five commercial brands relying mostly on lithium disilicate (Celtra®Duo, IPS e.max®CAD, Straumann®n!ce®, CEREC Tessera™, and VITA Suprinity®).
Dent Mater
November 2024
Postgraduate Program in Dentistry, Dental School, University of Passo Fundo, Passo Fundo, RS, Brazil. Electronic address:
Objectives: To evaluate the influence of microstructure and chemical composition on the optical properties of CAD-CAM lithium disilicate glass-ceramics.
Methods: Samples (n = 5; 1.0 mm thickness) of shades A1, A2, and A3 were fabricated from CAD-CAM ceramic blocks (Ivoclar Vivadent): IPS e.
J Prosthodont
September 2024
Department of Restorative Dentistry, School of Dentistry, Araraquara, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.
Purpose: To analyze the microstructural and mechanical properties of various commercial trademarks of lithium disilicate ceramics for CAD-CAM systems.
Materials And Methods: Specimens of different lithium disilicate ceramics were obtained and randomized into 5 groups (n = 14): EM: e.max CAD; RT: Rosetta SM; EV: Evolith; PM: Smile-Lithium CAD; and, HS: HaHaSmile.
J Dent Res
July 2024
Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Computer-aided design (CAD)/computer-aided manufacturing (CAM) milling and handpiece grinding are critical procedures in the fabrication and adjustment of ceramic dental restorations. However, due to the formation of microfractures, these procedures are detrimental to the strength of ceramics. This study analyzes the damage associated with current brittle-regime grinding and presents a potential remedy in the application of a safer yet still efficient grinding regime known as "ductile-regime grinding.
View Article and Find Full Text PDFEur J Oral Sci
February 2024
Department of Prosthodontics and Periodontology, University of São Paulo - Bauru School of Dentistry, Sao Paulo, Brazil.
The aim of this study was to evaluate the effect of two finishing techniques, glazing or polishing, in comparison with the as-cut condition, on the biaxial-flexural-strength (BFS) of a zirconia-reinforced lithium silicate ceramic (ZLS). Cylinders were milled from CAD/CAM blocks and sliced to obtain disc-shaped specimens (ISO6872:2015). Polished and glazed specimens were processed following the manufacturer's instructions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!