Prion diseases are known as neurodegenerative diseases of the central nervous system with a long incubation period. Alzheimer's disease (AD) and prion diseases share the hallmark of severe neuronal loss, although their pathogenic mechanisms are similarly incomplete. It appears that these two neurodegenerative diseases share a complex deterioration of function involved in the onset of neuronal loss. To investigate presymptomatic biochemical changes indicative of the initial stage of prion diseases and decipher the pathophysiological mechanisms of these two neurodegenerative diseases, we performed a differential proteomic analysis on brain tissues of 263K-infected hamsters during the presymptomatic period and transgenic APPSWE, PSEN1dE9 mice (a mouse model of AD). We identified 7 differentially expressed proteins including the β-soluble N-ethylmaleimide-sensitive factor attachment protein (β-SNAP) by 2-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The β-SNAP expression patterns in the brains of cases and controls were further quantified by Western blotting. β-SNAP showed an early decrease followed by a progressive depletion. The expression of β-SNAP was also significantly downregulated in the mouse model of AD. β-SNAP is brain-specific and known to bind to the SNAP receptors and is therefore involved in the control of neurotransmitter release as well as in constitutive vesicular transport. Our results suggest that presynaptic failure and abnormalities in neurotransmission may be early events in the development of neuronal dysfunction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000371553 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!