Bisphenol A modulates receptivity and secretory function of human decidual cells: an in vitro study.

Reproduction

Institute of Animal Reproduction and Food ResearchPolish Academy of Sciences, Tuwima Street 10, 10-748 Olsztyn, PolandDepartment of Life SciencesUniversity of Siena, Via A. Moro, 2, Siena 53100, ItalyObstetrics and Gynecology DivisionLocal Health Authority 7, Campostaggia Hospital, Siena, ItalyDepartment of Reproduction and Gynecological EndocrinologyMedical University, Bialystok, Poland

Published: August 2015

The human endometrium is a fertility-determining tissue and a target of steroid hormones' action. Endocrine disruptors (EDs) can exert adverse effects on the physiological function of the decidua at the maternal-fetal interface. We examined the potential effects of an ED, bisphenol A (BPA), on endometrial maturation/decidualization, receptivity, and secretion of decidual factors (biomarkers). In vitro decidualized, endometrial stromal cells from six hysterectomy specimens were treated with 1  pM-1  μM of BPA, for 24  h and assessed for cell viability and proliferation. Three non-toxic concentrations of BPA (1  μM, 1  nM, and 1  pM) were selected to study its influence on secretion of cell decidualization biomarkers (IGF-binding protein and decidual prolactin (dPRL)), macrophage migration inhibitory factor (MIF) secretion, and hormone receptors' expression (estrogen receptors (ERα and ERβ); progesterone receptors (PRA and PRB); and human chorionic gonadotropin (hCG)/LH receptor (LH-R)). The results showed a decrease in cell viability (P<0.001) in response to BPA at the level of 1  mM. At the non-toxic concentrations used, BPA perturbed the expression of ERα, ERβ, PRA, PRB, and hCG/LH-R (P<0.05). Furthermore, 1  μM of BPA reduced the mRNA transcription of dPRL (P<0.05). Secretion of MIF was stimulated by all BPA treatments, the lowest concentration (1  pM) being the most effective (P<0.001). The multi-targeted disruption of BPA on decidual cells, at concentrations commonly detected in the human population, raises great concern about the possible consequences of exposure to BPA on the function of decidua and thus its potential deleterious effect on pregnancy.

Download full-text PDF

Source
http://dx.doi.org/10.1530/REP-14-0601DOI Listing

Publication Analysis

Top Keywords

cell viability
8
bisphenol modulates
4
modulates receptivity
4
receptivity secretory
4
secretory function
4
function human
4
human decidual
4
decidual cells
4
cells vitro
4
vitro study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!