Lipoteichoic acid (LTA) is a major component of the cell wall of Gram-positive bacteria. Its effects on living organisms are different from those of lipopolysaccharide (LPS) found in Gram-negative bacteria. LTA contributes to immune regulatory effects including anti-aging. In this study, we showed that LTA isolated from Lactobacillus plantarum (pLTA) inhibited melanogenesis in B16F10 mouse melanoma cells. pLTA reduced the cellular activity of tyrosinase and the expression of tyrosinase family members in a dose-dependent manner. The expression of microphthalmia-associated transcription factor (MITF), a key factor in the synthesis of melanin, was also decreased by pLTA. Further, we showed that pLTA activated melanogenesis signaling, such as extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinse (PI3K)/AKT. In addition, the expression of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and HuR, which are important RNA-binding proteins (RBPs), was reduced. pLTA likely degrades MITF via regulation of melanogenic signaling and RNA stability of melanogenic proteins, resulting in the reduction of melanin. Thus, our data suggest that pLTA has therapeutic potential for treating hyperpigmentation disorders and can also be used as a cosmetic whitening agent.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4332035 | PMC |
http://dx.doi.org/10.14348/molcells.2015.2263 | DOI Listing |
Curr Issues Mol Biol
December 2024
Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia.
Dental caries is a highly prevalent chronic disease that leads to dental pulp inflammation. It is treated by removing the damaged tooth structure and applying a material that promotes resolution of pulpal inflammation. Tumor necrosis factor superfamily 14 (TNFSF14) is an immunomodulatory cytokine and a member of the TNF superfamily.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea.
Lipoteichoic acid (LTA) and peptidoglycan (PGN) are considered as key virulence factors of , which is a representative sepsis-causing Gram-positive pathogen. However, cooperative effect of LTA and PGN on nitric oxide (NO) production is still unclear despite the pivotal roles of NO in initiation and progression of sepsis. We here evaluated the cooperative effects of LTA (SaLTA) and muramyl dipeptide (MDP), the minimal structure of PGN, on NO production in both a mouse macrophage-like cell line, RAW 264.
View Article and Find Full Text PDFmSystems
December 2024
Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China.
The evidence that intratumoral microbiomes, as a rising hallmark of cancer, have a profound impact on cancer phenotypes is increasingly compelling. However, the impact of the composition and diversity of the intratumoral microbiome on the prognosis of patients undergoing surgical resection for hepatocellular carcinoma (HCC) remains incompletely understood. In this study, we revealed a high abundance of bacteria in the neoplastic tissues.
View Article and Find Full Text PDFJ Cell Mol Med
December 2024
Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.
Metabolites
November 2024
School of Biomolecular and Biomedical Science, University College Dublin, D04 V1W8 Dublin, Ireland.
Alzheimer's disease (AD) is a neurodegenerative disorder traditionally characterised by the presence of amyloid beta (Aβ) plaques and neurofibrillary tau tangles in the brain. However, emerging research has highlighted additional metabolic hallmarks of AD pathology. These include the metabolic reprogramming of microglia in favour of glycolysis over oxidative phosphorylation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!