Mapping-by-sequencing and SNP marker analysis were used to fine map the Ligon-lintless-1 ( Li 1 ) short fiber mutation in tetraploid cotton to a 255-kb region that contains 16 annotated proteins. The Ligon-lintless-1 (Li 1 ) mutant of cotton (Gossypium hirsutum L.) has been studied as a model for cotton fiber development since its identification in 1929; however, the causative mutation has not been identified yet. Here we report the fine genetic mapping of the mutation to a 255-kb region that contains only 16 annotated genes in the reference Gossypium raimondii genome. We took advantage of the incompletely dominant dwarf vegetative phenotype to identify 100 mutants (Li 1 /Li 1 ) and 100 wild-type (li 1 /li 1 ) homozygotes from a mapping population of 2567 F2 plants, which we bulked and deep sequenced. Since only homozygotes were sequenced, we were able to use a high stringency in SNP calling to rapidly narrow down the region harboring the Li 1 locus, and designed subgenome-specific SNP markers to test the population. We characterized the expression of all sixteen genes in the region by RNA sequencing of elongating fibers and by RT-qPCR at seven time points spanning fiber development. One of the most highly expressed genes found in this interval in wild-type fiber cells is 40-fold under-expressed at the day of anthesis (DOA) in the mutant fiber cells.  This gene is a major facilitator superfamily protein, part of the large family of proteins that includes auxin and sugar transporters. Interestingly, nearly all genes in this region were most highly expressed at DOA and showed a high degree of co-expression. Further characterization is required to determine if transport of hormones or carbohydrates is involved in both the dwarf and lintless phenotypes of Li 1 plants.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-015-2539-4DOI Listing

Publication Analysis

Top Keywords

cotton gossypium
8
gossypium hirsutum
8
255-kb region
8
region annotated
8
fiber development
8
genes region
8
highly expressed
8
fiber cells
8
genes
5
fiber
5

Similar Publications

The Multidrug and toxin compound extrusion gene GhTT12 promotes the accumulation of both proanthocyanidins and anthocyanins in Gossypium hirsutum.

Plant Physiol Biochem

January 2025

Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, Zhejiang Sci-Tech University, Hangzhou, 310018, China. Electronic address:

The pigments present in the fibers of naturally colored cotton provide excellent antibacterial and environmentally friendly properties, making these colored fibers increasingly favored by the textile industry and consumers. Proanthocyanidins (PAs), the critical pigments responsible for the color of brown cotton fiber, are produced on the endoplasmic reticulum and subsequently transported to the vacuole for polymerization and/or storage. Previous studies have identified GhTT12 as a potential transmembrane transporter of PAs in Gossypium hirsutum, with GhTT12 being a homolog of Arabidopsis Transparent Testa 12 (TT12).

View Article and Find Full Text PDF

Genome-Wide Identification and Functional Characterization of Gene Family Reveal Its Involvement in Response to Stress in Cotton.

Int J Mol Sci

January 2025

Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050000, China.

SKP1 constitutes the Skp1-Cullin-F-box ubiquitin E3 ligase (SCF), which plays a role in plant growth and development and biotic and abiotic stress in ubiquitination. However, the response of the gene family to abiotic and biotic stresses in cotton has not been well characterized. In this study, a total of 72 genes with the conserved domain of SKP1 were identified in four Gossypium species.

View Article and Find Full Text PDF

Systematic Analysis of Cotton RING E3 Ubiquitin Ligase Genes Reveals Their Potential Involvement in Salt Stress Tolerance.

Int J Mol Sci

January 2025

Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops Shandong Academy of Agricultural Sciences, Jinan 250100, China.

The Really Interesting New Gene (RING) E3 ubiquitin ligases represent the largest class of E3 ubiquitin ligases involved in protein degradation and play a pivotal role in plant growth, development, and environmental responses. Despite extensive studies in numerous plant species, the functions of RING E3 ligases in cotton remain largely unknown. In this study, we performed systematic identification, characterization, and expression analysis of genes in cotton.

View Article and Find Full Text PDF

Time-Course Transcriptomics Analysis Reveals Molecular Mechanisms of Salt-Tolerant and Salt-Sensitive Cotton Cultivars in Response to Salt Stress.

Int J Mol Sci

January 2025

Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China.

Salt stress is an environmental factor that limits plant seed germination, growth, and survival. We performed a comparative RNA sequencing transcriptome analysis during germination of the seeds from two cultivars with contrasting salt tolerance responses. A transcriptomic comparison between salt-tolerant cotton cv Jin-mian 25 and salt-sensitive cotton cv Su-mian 3 revealed both similar and differential expression patterns between the two genotypes during salt stress.

View Article and Find Full Text PDF

Transgenic Cotton Expressing ds Significantly Delays the Growth and Development of by Inhibiting Its Glycolysis and TCA Cycle.

Int J Mol Sci

December 2024

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China.

In our previous research, we found that not only participates in the detoxification metabolism of neonicotinoid insecticides in cotton aphid but also affects their growth and development. However, how does transgenic cotton expressing ds affect the growth and development of cotton aphid? In this study, we combined transcriptome and metabolome to analyze how to inhibit the growth and development of cotton aphid treated with transgenic cotton expressing ds (TG cotton). The results suggested that a total of 509 differentially expressed genes (DEGs) were identified based on the DESeq method, and a total of 431 differential metabolites (DAMs) were discovered using UPLC-MS in the metabolic analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!