The diversity and viability of prokaryotic communities in the primitive organomineral soils of East Antarctica have been studied; it has been shown that the total number of bacteria is smaller than and the viability of bacteria is similar to that in soils of the temperate zone. The prokaryotic communities are characterized by the occurrence of a major part of cells in filterable forms, which is higher than the analogous parameter for the temperate soils. The method of fluorescence in situ hybridization (FISH) revealed that the distribution of the main taxons is similar to that in the temperate soils: the portion of the domain Archaea is smaller than that of the domain Bacteria; the total content of Gram-negative bacteria (the phyla Proteobacteria, Acidobacteria, and Planctomycetes) is higher than that of Gram-positive bacteria (Actinobacteria). Within the phylum Proteobacteria, a significant variation of three proteobacterial classes has been noted along the profiles of the soils studied.

Download full-text PDF

Source

Publication Analysis

Top Keywords

prokaryotic communities
8
temperate soils
8
soils
6
bacteria
5
[diversity viability
4
viability prokaryotes
4
prokaryotes primitive
4
primitive soils
4
soils larsemann
4
larsemann oasis
4

Similar Publications

Background: Viruses that infect prokaryotes (phages) constitute the most abundant group of biological agents, playing pivotal roles in microbial systems. They are known to impact microbial community dynamics, microbial ecology, and evolution. Efforts to document the diversity, host range, infection dynamics, and effects of bacteriophage infection on host cell metabolism are extremely underexplored.

View Article and Find Full Text PDF

Assembly of soil multitrophic community regulates multifunctionality via multifaceted biotic factors in subtropical ecosystems.

Environ Int

January 2025

College of Natural Resources and Environment, Northwest A & F University, Yangling 712100 Shaanxi, China. Electronic address:

Soil biodiversity underpins multiple ecosystem functions and services essential for human well-being. Understanding the determinants of biodiversity-ecosystem function relationships (BEFr) is critical for the conservation and management of soil ecosystems. Community assembly processes determine community diversity and structure.

View Article and Find Full Text PDF

Coastal eutrophication transforms shallow micro-benthic reef communities.

Sci Total Environ

January 2025

Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands; IBED, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, the Netherlands.

Article Synopsis
  • Coral reefs worldwide are suffering from coastal eutrophication, leading to decreased coral cover and increased harmful organisms like algae and invertebrates.
  • The study focuses on how micro-benthic communities, specifically foraminifera, diatoms, and bacteria, are influenced by turbidity associated with eutrophication in the Spermonde Archipelago, using environmental DNA analysis.
  • Findings indicate that shallower reef flat communities are much more affected by turbidity than deeper reef slope communities, with foraminifera and diatom ESVs serving as indicators of varying turbidity levels, thus highlighting the influence of local environmental conditions on these micro-benthic communities.
View Article and Find Full Text PDF

Microbial communities are crucial for important ecosystem functions in the open ocean, such as primary production and nutrient cycling. However, few studies have addressed the distribution of microplankton communities in the remote oligotrophic region of the Pacific Ocean. Moreover, the biogeochemical and physical drivers of microbial community structure are not fully understood in these areas.

View Article and Find Full Text PDF

Biogeographical Distribution of River Microbial Communities in Atlantic Catchments.

Environ Microbiol Rep

February 2025

IHCantabria-Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Universidad de Cantabria, Santander, Spain.

Microbes inhabit virtually all river ecosystems, influencing energy flow and playing a key role in global sustainability and climate change. Yet, there is uncertainty about how various taxonomic groups respond to large-scale factors in river networks. We analysed microbial community richness and composition across six European Atlantic catchments using environmental DNA sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!