Carbon (C) sequestration potential of biochar should be considered together with emission of greenhouse gases when applied to soils. In this study, we investigated CO2 and N2O emissions following the application of rice husk biochars to cultivated grassland soils and related gas emissions tos oil C and nitrogen (N) dynamics. Treatments included biochar addition (CHAR, NO CHAR) and amendment (COMPOST, UREA, NO FERT). The biochar application rate was 0.3% by weight. The temporal pattern of CO2 emissions differed according to biochar addition and amendments. CO2 emissions from the COMPOST soils were significantly higher than those from the UREA and NO FERT soils and less CO2 emission was observed when biochar and compost were applied together during the summer. Overall N2O emission was significantly influenced by the interaction between biochar and amendments. In UREA soil, biochar addition increased N2O emission by 49% compared to the control, while in the COMPOST and NO FERT soils, biochar did not have an effect on N2O emission. Two possible mechanisms were proposed to explain the higher N2O emissions upon biochar addition to UREA soil than other soils. Labile C in the biochar may have stimulated microbial N mineralization in the C-limited soil used in our study, resulting in an increase in N2O emission. Biochar may also have provided the soil with the ability to retain mineral N, leading to increased N2O emission. The overall results imply that biochar addition can increase C sequestration when applied together with compost, and might stimulate N2O emission when applied to soil amended with urea.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447436 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0126841 | PLOS |
Food Chem
January 2025
Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, Shanxi, China; School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China. Electronic address:
Tert-butylhydroquinone (TBHQ) is a widely used synthetic phenolic antioxidant found in edible oils and other fried foods. Nevertheless, the excess use of TBHQ can reduce food quality and impact public health. In this paper, we reported the synthesis of a nanocomposite consisting of carbon and nitrogen co-doped nickel oxide (NiO-N/C-700), which was used to modify a pencil graphite electrode for the sensitive detection of TBHQ.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
The spread of antibiotic resistance genes (ARGs) in rural wastewater threatens both ecological environment and human health. Earthworm ecological filters (EEFs) represent a green technology for rural sewage treatment. However, their effectiveness in removing ARGs remains a significant challenge.
View Article and Find Full Text PDFSci Total Environ
January 2025
College of Life Science, Northeast Agricultural University, Harbin 150030, China; Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China. Electronic address:
This research evaluated how addition of biochar and zeolite affected nitrogen transformation and retention during the composting of kitchen waste. Four treatments, control (CK), 10 % biochar (B), 10 % zeolite (Z), and 5 % biochar +5 % zeolite (BZ) were used to study nitrogen transformation and retention. The results showed that biochar and zeolite can significantly reduce the loss of NH-N during the thermophilic phase (CK: 42.
View Article and Find Full Text PDFSci Total Environ
January 2025
Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China; State Key Laboratory of Coal Liquification, Gasification and Utilization with High Efficiency and Low Carbon Technology, East China University of Science and Technology, Shanghai 200237, China. Electronic address:
The development of a method to efficiently remove high concentrations of penicillin G sodium (PGNa) from the environment is important for human and animal health and safety. In this study, the degradative enzymes were immobilized by adsorption using biochar from penicillin fermentation waste residue, which could efficiently remove PGNa (900 mg/L) from an aqueous solution, with a removal rate of 99.84 % within 20 min.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China. Electronic address:
The severe contamination of the plasticiser dibutyl phthalate (DBP) in agriculture soils is often accompanied by a decrease in nutrient utilisation. Though the combined application of a variety of microorganisms can simultaneously address the problems of soil contamination and nutrient deprivation, the activity and function of microorganisms can be severely inhibited by DBP, and studies on their protection under DBP contamination are almost non-existent. In this study, a compound bacterial agent KPSB was prepared by optimising with FeO-modified biochar loaded with DBP-degrading bacterium Enterobacterium sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!