The analogy between stereo depth and brightness.

Perception

Department of Computer Science, University of Oregon, Eugene 97403.

Published: February 1990

Apparent depth in stereograms exhibits various simultaneous-contrast and induction effects analogous to those reported in the luminance domain. This behavior suggests that stereo depth, like brightness, is reconstructed, ie recovered from higher-order spatial derivatives or differences of the original signal. The extent to which depth is analogous to brightness is examined. There are similarities in terms of contrast effects but dissimilarities in terms of the lateral inhibition effects traditionally attributed to underlying spatial-differentiation operators.

Download full-text PDF

Source
http://dx.doi.org/10.1068/p180601DOI Listing

Publication Analysis

Top Keywords

stereo depth
8
depth brightness
8
analogy stereo
4
depth
4
brightness apparent
4
apparent depth
4
depth stereograms
4
stereograms exhibits
4
exhibits simultaneous-contrast
4
simultaneous-contrast induction
4

Similar Publications

NysL, a cytochrome P450 monooxygenase from the Gram-positive bacterium Streptomyces noursei, catalyzes the C10 hydroxylation of 10-deoxynystain to nystatin A, a clinically important antifungal. In this study, we present the 2.0 Å resolution crystal structure of NysL bound to nystatin A.

View Article and Find Full Text PDF

Grids designed for tomography: Stereovision transmission electron microscopy makes it easy to determine the winding handedness of helical nanocoils.

Micron

January 2025

Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central-6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan. Electronic address:

Determining the handedness of helical nanocoils using transmission electron microscopy (TEM) has traditionally been challenging due to the deep depth of field and transmission nature of TEM, complementary techniques are considered necessary and have been practiced such as low angle rotary shadowing, scanning electron microscopy (SEM), or atomic force microscopy (AFM). These methods require customized sample preparation, making direct comparison difficult. Inspired by the need to identify the helical winding direction from TEM images alone, we developed a specialized tomography grid to capture stereo-pair images, enabling stereopsis.

View Article and Find Full Text PDF

Residual Vision Transformer and Adaptive Fusion Autoencoders for Monocular Depth Estimation.

Sensors (Basel)

December 2024

Institute of Computer and Communication Engineering, Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan.

Precision depth estimation plays a key role in many applications, including 3D scene reconstruction, virtual reality, autonomous driving and human-computer interaction. Through recent advancements in deep learning technologies, monocular depth estimation, with its simplicity, has surpassed the traditional stereo camera systems, bringing new possibilities in 3D sensing. In this paper, by using a single camera, we propose an end-to-end supervised monocular depth estimation autoencoder, which contains an encoder with a structure with a mixed convolution neural network and vision transformers and an effective adaptive fusion decoder to obtain high-precision depth maps.

View Article and Find Full Text PDF

Objectives: Our study aimed to compare signal characteristics of subdural electrodes (SDE) and depth stereo EEG placed within a 5-mm vicinity in patients with drug-resistant epilepsy. We report how electrode design and placement collectively affect signal content from a shared source between these electrode types.

Methods: In subjects undergoing invasive intracranial EEG evaluation at a surgical epilepsy center from 2012 to 2018, stereo EEG and SDE electrode contacts placed within a 5-mm vicinity were identified.

View Article and Find Full Text PDF

Autonomous technologies have revolutionized transportation, military operations, and space exploration, necessitating precise localization in environments where traditional GPS-based systems are unreliable or unavailable. While widespread for outdoor localization, GPS systems face limitations in obstructed environments such as dense urban areas, forests, and indoor spaces. Moreover, GPS reliance introduces vulnerabilities to signal disruptions, which can lead to significant operational failures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!