AI Article Synopsis

  • The study investigated how a significant reduction in adult neurogenesis affects the development of epilepsy after inducing seizures with kainic acid in specially designed mice lacking neurogenesis.
  • The researchers found that while there was some increase in specific brain cell types after seizures in the knockout mice, the overall number of newly born cells was much lower compared to normal mice.
  • Epileptic activity, including the onset and frequency of seizures, was similar between both groups, suggesting that reduced adult neurogenesis doesn't prevent the development of epilepsy, but its role in the long-term epileptic condition remains uncertain.

Article Abstract

The goal of this study was to determine whether a substantial decrease in adult neurogenesis influences epileptogenesis evoked by the intra-amygdala injection of kainic acid (KA). Cyclin D2 knockout (cD2 KO) mice, which lack adult neurogenesis almost entirely, were used as a model. First, we examined whether status epilepticus (SE) evoked by an intra-amygdala injection of KA induces cell proliferation in cD2 KO mice. On the day after SE, we injected BrdU into mice for 5 days and evaluated the number of DCX- and DCX/BrdU-immunopositive cells 3 days later. In cD2 KO control animals, only a small number of DCX+ cells was observed. The number of DCX+ and DCX/BrdU+ cells/mm of subgranular layer in cD2 KO mice increased significantly following SE (p<0.05). However, the number of newly born cells was very low and was significantly lower than in KA-treated wild type (wt) mice. To evaluate the impact of diminished neurogenesis on epileptogenesis and early epilepsy, we performed video-EEG monitoring of wt and cD2 KO mice for 16 days following SE. The number of animals with seizures did not differ between wt (11 out of 15) and cD2 KO (9 out of 12) mice. The median latency to the first spontaneous seizure was 4 days (range 2-10 days) in wt mice and 8 days (range 2-16 days) in cD2 KO mice and did not differ significantly between groups. Similarly, no differences were observed in median seizure frequency (wt: 1.23, range 0.1-3.4; cD2 KO: 0.57, range 0.1-2.0 seizures/day) or median seizure duration (wt: 51 s, range 23-103; cD2 KO: 51 s, range 23-103). Our results indicate that SE-induced epileptogenesis is not disrupted in mice with markedly reduced adult neurogenesis. However, we cannot exclude the contribution of reduced neurogenesis to the chronic epileptic state.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447381PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0128285PLOS

Publication Analysis

Top Keywords

adult neurogenesis
12
cd2 mice
12
status epilepticus
8
evoked intra-amygdala
8
intra-amygdala injection
8
number dcx+
8
mice
5
epileptogenesis kainic
4
kainic acid-induced
4
acid-induced status
4

Similar Publications

Neurodegenerative diseases are characterized by progressive loss of neurons and persistent inflammation. Neurons are terminally differentiated cells, and lost neurons cannot be replaced since neurogenesis is restricted to only two neurogenic niches in the adult brain, whose neurogenic potential decreases with age. In this regard, the astrocytes reprogramming into neurons may represent a promising strategy for restoring the lost neurons and rebuilding neural circuits.

View Article and Find Full Text PDF

Linking Adult Olfactory Neurogenesis to Social Reproductive Stimuli: Mechanisms and Functions.

Int J Mol Sci

December 2024

Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy.

Over the last three decades, adult neurogenesis in mammals has been a central focus of neurobiological research, providing insights into brain plasticity and function. However, interest in this field has recently waned due to challenges in translating findings into regenerative applications and the ongoing debate about the persistence of this phenomenon in the adult human brain. Despite these hurdles, significant progress has been made in understanding how adult neurogenesis plays a critical role in the adaptation of brain circuits to environmental stimuli regulating key brain functions.

View Article and Find Full Text PDF

Individual choices shape life course trajectories of brain structure and function beyond genes and environment. We hypothesized that individual task engagement in response to a learning program results in individualized learning biographies and connectomics. Genetically identical female mice living in one large shared enclosure freely engaged in self-paced, automatically administered and monitored learning tasks.

View Article and Find Full Text PDF

Absence of the structural protein, dystrophin, results in the neuromuscular disorder Duchenne Muscular Dystrophy (DMD). In addition to progressive skeletal muscle dysfunction, this multisystemic disorder can also result in cognitive deficits and behavioural changes that are likely to be consequences of dystrophin loss from central neurons and astrocytes. Dystrophin-deficient mdx mice exhibit decreases in grey matter volume in the hippocampus, the brain region that encodes and consolidates memories, and this is exacerbated with ageing.

View Article and Find Full Text PDF

Improving Recall Accuracy in Sparse Associative Memories That Use Neurogenesis.

Neural Comput

January 2025

Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, U.K.

The creation of future low-power neuromorphic solutions requires specialist spiking neural network (SNN) algorithms that are optimized for neuromorphic settings. One such algorithmic challenge is the ability to recall learned patterns from their noisy variants. Solutions to this problem may be required to memorize vast numbers of patterns based on limited training data and subsequently recall the patterns in the presence of noise.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!