Thirteen reference genes were investigated to determine their stability to be used as a housekeeping in gene expression studies in skeletal muscle of chickens. Five different algorithms were used for ranking of reference genes and results suggested that individual rankings of the genes differed among them. The stability of the expression of reference genes were validated using samples obtained from the Pectoralis major muscle in chicken. Samples were obtained from chickens in different development periods post hatch and under different nutritional diets. For gene expression calculation the ΔΔCt approach was applied to compare relative expression of pairs of genes within each of 52 samples when normalized to mitochondrially encoded cytochrome c oxidase II (MT-CO2) target gene. Our findings showed that hydroxymethylbilane synthase (HMBS) and hypoxanthine phosphoribosyl transferase 1 (HPRT1) are the most stable reference genes while transferrin receptor (TFRC) and beta-2-microglobulin (B2M) ranked as the least stable genes in the Pectoralis major muscle of chickens. Moreover, our results revealed that HMBS and HPRT1 gene expression did not change due to dietary variations and thus it is recommended for accurate normalization of RT-qPCR data in chicken Pectoralis major muscle.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447422 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0127935 | PLOS |
Mol Neurobiol
January 2025
Department of Anesthesiology, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, 241004, China.
Stroke is the second-leading global cause of death. The damage attributed to the immune storm triggered by ischemia-reperfusion injury (IRI) post-stroke is substantial. However, data on the transcriptomic dynamics of pyroptosis in IRI are limited.
View Article and Find Full Text PDFAnn Med
December 2025
Department of Radio-Chemotherapy, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
Background: Non-small cell lung cancer (NSCLC) is a fatal disease, and radioresistance is an important factor leading to treatment failure and disease progression. The objective of this research was to detect radioresistance-related genes (RRRGs) with prognostic value in NSCLC.
Methods: The weighted gene coexpression network analysis (WGCNA) and differentially expressed genes (DEGs) analysis were performed to identify RRRGs using expression profiles from TCGA and GEO databases.
Nutrients
December 2024
Institute of Quality Standards and Testing Technology for Agro-Products of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
Background/objectives: Polyphenols represent a new strategy of dietary intervention for heat stress regulation.
Methods: The metabolic and genetic effects of three heat stress-regulated mung bean polyphenols on mouse small intestinal epithelial Mode-k cells were investigated by metabolomics-transcriptomics correlation analysis at different heat stress levels.
Results: Lipid metabolism, energy metabolism, and nervous system pathways were the key metabolic regulatory pathways.
Int J Mol Sci
January 2025
Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia.
A pseudogene is a non-functional copy of a protein-coding gene. Processed pseudogenes, which are created by the reverse transcription of mRNA and subsequent integration of the resulting cDNA into the genome, being a major pseudogene class, represent a significant challenge in genome analysis due to their high sequence similarity to the parent genes and their frequent absence in the reference genome. This homology can lead to errors in variant identification, as sequences derived from processed pseudogenes can be incorrectly assigned to parental genes, complicating correct variant calling.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Health and Sport Science, University of Zaragoza, 50009 Zaragoza, Spain.
MicroRNAs play a pivotal role in the regulation of adipose tissue function and have emerged as promising therapeutic candidates for the management of obesity and associated comorbidities. Among them, miR-1 could be a potential biomarker for metabolic diseases and contribute to metabolic homeostasis. However, thorough research is required to fully elucidate the impact of miR-1 on human adipocyte thermogenesis and metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!