Synthesis of Cryptophanes with Two Different Reaction Sites: Chemical Platforms for Xenon Biosensing.

J Org Chem

†Laboratoire de Chimie de l'ENS LYON, UMR 5182 - CNRS, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France.

Published: June 2015

We report the synthesis of new water-soluble cryptophane host molecules that can be used for the preparation of (129)Xe NMR-based biosensors. We show that the cryptophane-223 skeleton can be modified to introduce a unique secondary alcohol to the propylenedioxy linker. This chemical functionality can then be exploited to introduce a functional group that is different from the six chemical groups attached to the aromatic rings. In this approach, the generation of a statistical mixture when trying to selectively functionalize a symmetrical host molecule is eliminated, which enables the efficient large-scale production of new cryptophanes that can be used as chemical platforms ready to use for the preparation of xenon biosensors. To illustrate this approach, two molecular platforms have been prepared, and the ability of these new derivatives to bind xenon has been investigated.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.5b00653DOI Listing

Publication Analysis

Top Keywords

chemical platforms
8
synthesis cryptophanes
4
cryptophanes reaction
4
reaction sites
4
chemical
4
sites chemical
4
platforms xenon
4
xenon biosensing
4
biosensing report
4
report synthesis
4

Similar Publications

Ocular surface chemical injuries often result in permanent visual impairment and necessitate complex, long-term treatments. Immediate and extensive irrigation serves as the first-line intervention, followed by various therapeutic protocols applied throughout different stages of the condition. To optimize outcomes, conventional regimens increasingly incorporate biological agents and surgical techniques.

View Article and Find Full Text PDF

A SiO@Au@Polyaniline (SiO@Au@PAN) system has been successfully fabricated leveraging the synergistic effects of gold nanoparticles (AuNPs) to realize enhanced photothermal performance. The SiO@Au@PAN exhibited strong near-infrared (NIR) absorbance, excellent photothermal conversion efficiency, good dispersibility, and outstanding photostability. The SiO nanospheres as the template provided numerous binding sites for coating of AuNPs.

View Article and Find Full Text PDF

Dual-Enzyme-Instructed Peptide Self-Assembly to Boost Immunogenic Cell Death by Coordinating Intracellular Calcium Overload and Chemotherapy.

ACS Nano

January 2025

Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China.

The concept of immunogenic cell death (ICD) induced by chemotherapy as a potential synergistic modality for cancer immunotherapy has been widely discussed. Unfortunately, most chemotherapeutic agents failed to dictate effective ICD responses due to their defects in inducing potent ICD signaling. Here, we report a dual-enzyme-instructed peptide self-assembly platform of (CPT-GFFpY-PLGVRK-Caps) that cooperatively utilizes camptothecin (CPT) and capsaicin (Caps) to promote ICD and engage systemic adaptive immunity for tumor rejection.

View Article and Find Full Text PDF

Dienia is a small, pantropical genus of epidendroid Malaxideae orchids. The floral lip is upwardly directed and does not serve as a landing platform for pollinators. This role has been assumed by sepals and/or gynostemium or whole inflorescence.

View Article and Find Full Text PDF

Isolated Neutral Organic Radical Unveiled Solvent-Radical Interaction in Highly Reducing Photocatalysis.

Angew Chem Int Ed Engl

January 2025

The University of Arizona, Chemistry and BioChemistry, 1306 E University Blvd, CSML 638, 85719, Tucson, UNITED STATES OF AMERICA.

Diffusion-limited kinetics is a key mechanistic debate when consecutive photoelectron transfer (conPET) is discussed in photoredox catalysis. In-situ generated organic photoactive radicals can access catalytic systems as reducing as alkaline metals that can activate remarkably stable bonds. However, in many cases, the extremely short-lived transient nature of these doublet state open-shell species has led to debatable mechanistic studies, hindering adoption and development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!