Background: A well characterized output of the circadian clock in plants is the daily rhythmic movement of leaves. This process has been used extensively in Arabidopsis to estimate circadian period in natural accessions as well as mutants with known defects in circadian clock function. Current methods for estimating circadian period by leaf movement involve manual steps throughout the analysis and are often limited to analyzing one leaf or cotyledon at a time.

Results: In this study, we describe the development of TRiP (Tracking Rhythms in Plants), a new method for estimating circadian period using a motion estimation algorithm that can be applied to whole plant images. To validate this new method, we apply TRiP to a Recombinant Inbred Line (RIL) population in Arabidopsis using our high-throughput imaging platform. We begin imaging at the cotyledon stage and image through the emergence of true leaves. TRiP successfully tracks the movement of cotyledons and leaves without the need to select individual leaves to be analyzed.

Conclusions: TRiP is a program for analyzing leaf movement by motion estimation that enables high-throughput analysis of large populations of plants. TRiP is also able to analyze plant species with diverse leaf morphologies. We have used TRiP to estimate period for 150 Arabidopsis RILs as well as 5 diverse plant species, highlighting the broad applicability of this new method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4445800PMC
http://dx.doi.org/10.1186/s13007-015-0075-5DOI Listing

Publication Analysis

Top Keywords

circadian period
16
leaf movement
12
trip tracking
8
tracking rhythms
8
rhythms plants
8
circadian clock
8
estimating circadian
8
analyzing leaf
8
motion estimation
8
plant species
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!