A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Myconanoparticles: synthesis and their role in phytopathogens management. | LitMetric

AI Article Synopsis

  • Nanotechnology offers sustainable and eco-friendly solutions for managing plant diseases, utilizing fungi for the production of nanoparticles like silver, which simplifies the process compared to other microbes.
  • Recent research highlights the ability of various fungi to synthesize multiple types of nanoparticles, although nanotechnological applications in agriculture are still developing, with materials like nanofungicides and nanopesticides being tested.
  • The review emphasizes the use of fungi in nanoparticle synthesis, the mechanisms involved, and the implications for plant disease control, crop improvement, and the potential impact on ecosystems.

Article Abstract

Nanotechnology can offer green and eco-friendly alternatives for plant disease management. Apart from being eco-friendly, fungi are used as bio-manufacturing units, which will provide an added benefit in being easy to use, as compared to other microbes. The non-pathogenic nature of some fungal species in combination with the simplicity of production and handling will improve the mass production of silver nanoparticles. Recently, a diverse range of fungi have been screened for their ability to create silver nanoparticles. Mycosynthesis of gold, silver, gold-silver alloy, selenium, tellurium, platinum, palladium, silica, titania, zirconia, quantum dots, usnic acid, magnetite, cadmium telluride and uraninite nanoparticles has also been reported by various researchers. Nanotechnological application in plant pathology is still in the early stages. For example, nanofungicides, nanopesticides and nanoherbicides are being used extensively in agriculture practices. Remote activation and monitoring of intelligent nano-delivery systems can assist agricultural growers of the future to minimize fungicides and pesticides use. Nanoparticle-mediated gene transfer would be useful for improvement of crops resistant to pathogens and pest. This review critically assesses the role of fungi in the synthesis of nanoparticles, the mechanism involved in the synthesis, the effect of different factors on the reduction of metal ions in developing low-cost techniques for the synthesis and recovery of nanoparticles. Moreover, the application of nanoparticles in plant disease control, antimicrobial mechanisms, and nanotoxicity on plant ecosystem and soil microbial communities has also been discussed in detail.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4433920PMC
http://dx.doi.org/10.1080/13102818.2015.1008194DOI Listing

Publication Analysis

Top Keywords

plant disease
8
silver nanoparticles
8
nanoparticles
6
myconanoparticles synthesis
4
synthesis role
4
role phytopathogens
4
phytopathogens management
4
management nanotechnology
4
nanotechnology offer
4
offer green
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!