Via the hydrothermal method, we synthesized MoS2 nanosheets with varying Co dopant concentrations of 0%, 3%, 7%, using cobaltous acetate as a promoter, and marked as A, B, and C, respectively. We found that the thickness and flatness of the nanosheets increased with the increase of the Co dopant concentrations. Meanwhile, the BET surface area of samples (A, B, and C) decreased with the increase of the Co dopant concentrations. Optical absorption spectroscopy showed that, compared to sample A, the A1 and B1 excitons of samples B and C were 10 and 23 meV redshifted, respectively. Then, we performed magnetization measurement to investigate the effect of Co-doping; the unique result implied that the values of the magnetic moment decreased with the increase of the Co dopant concentrations. We performed DFT computations to address the above magnetic result. The computational result indicated that the value of the magnetic moment decreased with the increase of the Co dopant concentrations, which is in agreement with the results of the experiments described above.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5cp01509j | DOI Listing |
Bone defects resulting from trauma or diseases that lead to bone loss have created a growing need for innovative materials suitable for treating bone-related conditions. The purpose of this study is, therefore, to synthesize and analyse the synergistic effects of cerium (Ce) and cerium-silver (Ce-Ag) doping of borosilicate bioactive glass (BBG) on the bioactivity, antibacterial properties, and biocompatibility for potential applications in bone tissue engineering. This study utilized a sol-gel Stöber method to synthesize doped BBGs based on S49B4.
View Article and Find Full Text PDFMolecules
December 2024
College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia.
Zinc oxide nanoparticles (ZnO NPs) are one of the most widely used nanoparticulate materials due to their antimicrobial properties. However, the current use of ZnO NPs is hindered by their potential cytotoxicity concerns, which are likely attributed to the generation of reactive oxygen species (ROS) and the dissolution of particles to ionic zinc. To reduce the cytotoxicity of ZnO NPs, transitional metals are introduced into ZnO lattices to modulate the ROS production and NP dissolution.
View Article and Find Full Text PDFMolecules
December 2024
CP2M-ESCPE Lyon, CNRS, University Claude Bernard Lyon 1, UMR 5128, 43 Bd du 11 Nov. 1918, CEDEX, 69616 Villeurbanne, France.
TiO:Eu nanoparticles with varying europium concentrations were successfully synthesized via a one-pot sol-gel approach using a molecular heterometallic single-source precursor (SSP) Eu-Ti. For comparison, nanomaterials with similar europium levels were also produced by impregnating europium salts onto the same TiO substrate. All the nanomaterials were thoroughly characterized using Eu elemental analysis, powder X-ray diffraction (XRD), scanning (SEM), transmission (TEM), scanning transmission electron microscopy (STEM), Brunauer-Emmett-Teller (BET) analysis, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and photoluminescence (PL).
View Article and Find Full Text PDFNat Commun
January 2025
Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, China.
Photocatalytic overall water splitting is a promising approach for a sustainable hydrogen provision using solar energy. For sufficient solar energy utilization, this reaction ought to be operated based on visible-light-active semiconductors, which is very challenging. In this work, an F-expedited nitridation strategy is applied to modify the wide-bandgap semiconductor SrTiO for visible-light-driven photocatalytic overall water splitting.
View Article and Find Full Text PDFNat Commun
January 2025
School of Materials Science and Engineering, Changzhou University, Changzhou, People's Republic of China.
High-capacity power battery can be attained through the elevation of the cut-off voltage for LiNiCoMnO high-nickel material. Nevertheless, unstable lattice oxygen would be released during the lithium deep extraction. To solve the above issues, the electronic structure is reconstructed by substituting Li ions with Y ions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!